
People and Knowledge Networks
WeST

Fachbereich 4: Informatik Institute for Web Science
and Technologies

Author Extraction from
Social Science Research Papers

Using Conditional Random Fields
and Distant Supervision

Masterarbeit
zur Erlangung des Grades eines Master of Science (M.Sc.)

im Studiengang Web Science

vorgelegt von
Martin Körner

Matrikelnummer: 210200113

Erstgutachter: Prof. Dr. Steffen Staab
Institute for Web Science and Technologies

Zweitgutachter: René Pickhardt
Institute for Web Science and Technologies

Koblenz, im August 2016

Erklärung

Hiermit bestätige ich, dass die vorliegende Arbeit von mir selbstständig verfasst
wurde und ich keine anderen als die angegebenen Hilfsmittel – insbesondere keine
im Quellenverzeichnis nicht benannten Internet-Quellen – benutzt habe und die
Arbeit von mir vorher nicht in einem anderen Prüfungsverfahren eingereicht wurde.
Die eingereichte schriftliche Fassung entspricht der auf dem elektronischen
Speichermedium (CD-Rom).

Ja Nein

Mit der Einstellung dieser Arbeit in die Bibliothek
bin ich einverstanden. � �

Der Veröffentlichung dieser Arbeit im Internet
stimme ich zu. � �

Der Text dieser Arbeit ist unter einer Creative
Commons Lizenz (CC BY-SA 4.0) verfügbar. � �

Der Quellcode ist unter einer GNU General Public
License (GPLv3) verfügbar. � �

Die erhobenen Daten sind unter einer Creative
Commons Lizenz (CC BY-SA 4.0) verfügbar. � �

. .
(Ort, Datum) (Unterschrift)

iii

Zusammenfassung

Um die Erstellung von Zitationsdaten für die deutschen Sozialwissenschaften zu
unterstützen, trägt diese Arbeit einen Ansatz zur Autorenextraktion von Literatur-
verzeichnissen bei. Anstatt sich auf kleine Mengen manuell annotierter Daten zu
verlassen, nutzen wir den Ansatz der Distant Supervision um automatisch teilweise
annotierter Trainingsdaten zu erstellen. Generalized Expectation Kriterien bieten
eine geeignete Zielfunktion um Conditional Random Fields mithilfe von teilweise
annotierten Daten zu lernen. Das resultierende Modell entscheidet nicht nur ob ein
Wort Teil eines Autorennamens ist, sondern seperiert auch aufgelistete Autoren und
unterscheidet zwischen deren Vor- und Nachnamen. Die Evaluierung unseres An-
satzes zur Autorenextraktion zeigt vielversprechende Ergebnisse. Zusätzlich deutet
sie auf einen Weg hin, mit dem der Kompromiss zwischen den beiden Metriken
Spezifität und Relevanz für das Modell beeinflusst werden kann.

Abstract

To help in the creation of citation information for the German social sciences, this
thesis contributes an approach for extracting author names from reference sections.
Instead of relying on small amounts of manually labeled data, we use a distantly
supervised approach to automatically generate a partially labeled training data
set. Generalized expectation criteria provide a suitable objective function to learn
conditional random fields using such partially labeled data. The resulting model
does not only decide if a word is part of an author, but also separates the listed
authors and distinguishes between their first and last names. The evaluation of our
approach for the author extraction task reports a promising performance. In addition,
it suggests ways of influencing the trade-off between the precision and recall of the
model.

v

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-sa/4.0/.

vi

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Contents

List of Abbreviations ix

1. Introduction 1

2. Related Work 5

3. Conditional Random Fields (CRFs) 7
3.1. Foundations . 7

3.1.1. Probability Theory . 7
3.1.2. Probabilistic Graphical Models 11

3.2. Encoding of CRFs . 17
3.3. Inference of CRFs . 20
3.4. Learning of CRFs . 23

4. Distant Supervision 27
4.1. Overview . 27
4.2. Distant Supervision and CRFs . 28

4.2.1. Marginalization . 29
4.2.2. Generalized Expectation (GE) 30

5. Author Extraction 33
5.1. Preprocessing . 33
5.2. Generating Training Sets with Distant Supervision 34

5.2.1. Knowledge Base Creation . 34
5.2.2. Author Name Matching . 34

5.3. Building GE Constraints . 35
5.4. Learning CRFs . 38

5.4.1. Graph Construction . 39
5.4.2. Model Parameters . 39
5.4.3. Feature Engineering . 40

6. Implementation 43
6.1. Research Paper Preprocessing . 43
6.2. Generating Training Sets using Distant Supervision 44

6.2.1. Knowledge Base Creation . 44
6.2.2. Author Name Matching . 46

6.3. Building GE Constraints . 49

vii

6.4. Learning CRFs . 49
6.4.1. Graph Construction . 50
6.4.2. Model Parameters . 50
6.4.3. Feature Engineering . 51

7. Evaluation 53

8. Conclusion and Future Work 65
8.1. Conclusion . 65
8.2. Future Work . 65

Appendices 68

A. Author Extraction Example 68
A.1. Factor Product . 68
A.2. Gibbs Distribution . 68

A.2.1. Exemplary Calculation . 68
A.2.2. Full Distribution . 69

A.3. Conditional Random Fields . 69
A.3.1. Calculation of Factor With D ⊆ X 69
A.3.2. Exemplary Calculation . 71

A.4. Linear-Chain CRFs . 72
A.4.1. Additional Factors . 72
A.4.2. Additional Energy Functions 72
A.4.3. Feature Functions . 72
A.4.4. Exemplary Calculation . 74

A.5. Log-Likelihood Function . 76
A.6. Distantly Supervised Training Sets . 77

A.6.1. Author Name Matching . 77
A.6.2. GE Constraints . 79

A.7. Feature Engineering . 80

B. Evaluation 83
B.1. Accuracy vs. F1 Score . 83
B.2. Configuration . 84
B.3. Feature Engineering . 85
B.4. Detailed Results . 86
B.5. Scalability . 86

Subject Index 87

Acknowledgments 89

References 91

viii

List of Abbreviations

BFGS Broyden–Fletcher–Goldfarb–Shanno.

BIEO Beginning-Intermediate-End-Other.

BIO Beginning-Intermediate-Other.

CPD conditional probability distribution.

CRF conditional random field.

GE generalized expectation.

GND Gemeinsame Normdatei.

GODDAG general ordered-descendant directed acyclic graph.

HMM hidden Markov model.

IID independent and identically distributed.

KL Kullback–Leibler.

MALLET MAchine Learning for LanguagE Toolkit.

MEMM maximum entropy Markov model.

NLP natural language processing.

PDF Portable Document Format.

RDF Resource Description Framework.

SPARQL SPARQL Protocol and RDF Query Language.

SSOAR Social Science Open Access Repository.

XML Extensible Markup Language.

ix

1. Introduction

A citation index provides information on the citations between publications. This
information is essential for the knowledge discovery process when conducting re-
search. Several services are available that provide citation indices for research areas
such as mathematics and physics1, computer science2, and medicine3. Despite its
importance, there is a shortage of citation data for German social science publica-
tions [Her15]. Even though a number of commercial services include citation data
for a broad range of research areas, they do not provide a sufficient coverage of
smaller academic fields [MW07]. In addition, commercial services generally do not
publicly share their datasets which hinders a full utilization of the citation data. The
Social Science Citation Index4 by Thomson Reuters in particular was criticized for
being ideologically biased and containing methodological deficiencies in the citation
counting [K+04]. Thereby, the motivation of this thesis is to contribute to the efforts
of extracting citation data from research papers in order to fill the gap for German
social science publications and to be less dependent on commercial services.

Possible steps for extracting a citation index from a body of research papers are
shown in Figure 1.1. Assuming that the research papers are given in the Portable
Document Format (PDF), a first step is to convert them to text files with an appropriate
encoding. This allows a further processing of the data. In our approach, we further
assume that all citations that are made in the body of a research paper also appear in
the form of reference strings. Such reference strings can appear either in a separate
reference section or in the footnotes near the according citations. Thereby, the second
step is to extract all reference strings. The strings are then segmented into different
attributes that identify the referenced paper in step three. Such attributes can be
the authors, title, journal, and publication year. An approach that combines the
second and third step by detecting reference strings based on the appearance of the
mentioned attributes also could be imaginable. Step four is to match this extracted
information against existing meta data records in order to assign a unique identifier
such as a digital object identifier (DOI). From this we can construct a network of research
papers where citations are modeled as directed edges. The resulting network can be
used as a citation index.

It is not the goal of this thesis to cover all these steps. Instead, we focus on the
extraction of author names from the reference section of a given research paper. The

1http://related-work.net/ (accessed Aug. 6, 2016)
2http://dblp.uni-trier.de/ (accessed Aug. 6, 2016)
3http://www.ncbi.nlm.nih.gov/pubmed (accessed Aug. 6, 2016)
4http://scientific.thomson.com/products/ssci/ (accessed Aug. 6, 2016)

1

http://related-work.net/
http://dblp.uni-trier.de/
http://www.ncbi.nlm.nih.gov/pubmed
http://scientific.thomson.com/products/ssci/

Figure 1.1.: Extraction process for generating a citation network from given research
papers as PDF files.

goal is to develop an approach that distinguishes between individual authors in a
reference string as well as their first names and last names. Further, we focus on the
extraction from research papers in the area of German social sciences.

Since there is no data set available to address the given task with a supervised
machine learning approach, we will look into the concept of distant supervision. This
allows an automated generation of partially labeled training data using an external
knowledge base. In our scenario, this knowledge base is a list of author names from
related research domains. This list of author names is matched against a given set of
unlabeled reference sections.

To apply an automated tagging of author names in reference strings, several
issues need to be addressed. For example, there are different ways in which an
author name can be written in a reference string. An automated tagging also often
results in overlapping tags when multiple authors are listed in the same reference
string. Instead of considering only one of the overlapping tags, we aim to include
all available information in our model. For this, we will discuss the general ordered-
descendant directed acyclic graph (GODDAG) as an appropriate data structure for
representing overlapping tags.

The probabilistic framework of conditional random fields (CRFs) is widely used for
entity recognition tasks. Yet, their original definition by Lafferty, McCallum, and
Pereira [LMP01] is only applicable to fully labeled training data. Distant supervision
on the other hand provides partially labeled data. We will discuss two different
approaches that allow the usage of distantly supervised training sets for the learning
of CRFs: The first is a marginalization approach by Tsuboi et al. [Tsu+08]. The
second approach uses generalized expectation (GE) criteria that were first proposed
by Mann and McCallum [MM07]. We will show that the marginalization approach
is less suitable for a distantly supervised training than one using GE criteria. As a
result, our author extraction implementation uses GE constraints to learn CRFs. This
combination of distant supervision with GE constraints for learning CRFs was first
applied by Lu et al. [Lu+13] in the context of web entity detection.

The remainder of this thesis is structured as follows. In Chapter 2, we give an
overview of the related work in the area of entity recognition with a focus on refer-
ence string extraction. Using the author extraction task as an example, Chapter 3

2

discusses the foundations of CRFs as well as their encoding, inferencing, and learning.
Chapter 4 focuses on distant supervision as an approach to learn CRFs by comparing
the approaches of marginalization and GE constraints. The different steps of our
author extraction approach are discussed in more detail in Chapter 5. In that chapter,
we also state the research questions that are addressed in this thesis. Following this,
we present our author extraction implementation in Chapter 6. An evaluation that
addresses our research questions will be presented in Chapter 7. In Chapter 8, we
conclude the thesis and discuss the possible future work.

3

2. Related Work

In this chapter, we will discuss some of the related work in the area of entity recogni-
tion with a focus on bibliographic information extraction from research papers. We
will also consider an approach on entity recognition that uses unlabeled data during
the learning process.

Giles, Bollacker, and Lawrence [GBL98] propose one of the first autonomous cita-
tion indexing systems called CiteSeer. The system uses heuristics following an “invari-
ants first” philosophy for detecting the different fields in reference strings [GBL98].
Thereby, fields that appeared in similar positions for all reference strings are parsed
first. Additionally, databases that contain for example author or journal names
are used. In an evaluation of 5,093 documents related to the topic of “neural net-
works”, 80.2% of the titles, 82.1% of the authors, and 44.2% of the page numbers
were extracted correctly from the retrieved references [GBL98].

Peng and McCallum [PM04], Councill, Giles, and Kan [CGK08], as well as Groza,
Grimnes, and Handschuh [GGH12] rely on CRFs [LMP01] for extracting biblio-
graphic information from research papers. The three approaches followed the same
steps: After extracting and segmenting the reference strings, they are split into tokens
and each token gets assigned a number of features. Example for such features are the
position in the line, whether or not the token starts with a capitalized letter, contains
a dot, or only contains digits. In addition, external lexicons are used in order to
determine features like (author) surnames, places, and months. The CRFs are learned
on fully labeled data sets containing between 200 and 830 reference strings. The
labels represent the different fields in a reference string such as the authors, title, date,
and publisher. The resulting CRF model is then used for labeling unseen testing data
and the performance is evaluated using the metrics precision, recall, and F1 score (see
Chapter 7). Groza, Grimnes, and Handschuh [GGH12] compares the three mentioned
studies by applying them on the Cora dataset1 which resulted from the Cora portal
for research papers [McC+00]. The approach by Groza, Grimnes, and Handschuh
[GGH12] outperforms the two other approached and has a F1 scores higher than 93%
for all considered labels [GGH12]. For the author labels, they achieve a F1 score of
99.3% for the Cora dataset.

Instead of relying on fully labeled data, Lu et al. [Lu+13] use the approach of
distant supervision in combination with GE criteria to learn CRF models. Their
goal is to extract named entities such as organizations, persons, or places from web

1https://people.cs.umass.edu/~mccallum/data.html (accessed Aug. 6, 2016)

5

https://people.cs.umass.edu/~mccallum/data.html

pages [Lu+13]. For this, they use DBpedia2 as a knowledge base for the different
entity types for the automated labeling of semi-structured HTML elements. After
additionally applying a collective detection model, an evaluation on 16,755 manually
labeled named entities shows a F1 score of 72.56% with a precision of 70.46% and
recall of 74.79% [Lu+13].

To summarize, several aspects of the bibliographic information extraction from
research papers can be achieved with a considerably good performance. Especially
the segmentation of a given reference string into its elements by using CRFs [PM04;
CGK08; GGH12] shows very promising results. Yet, all current approaches have
in common that they rely on manually labeled data sets for training their models.
Manually labeled data sets are expensive and thereby usually only exist in smaller
quantities. In our particular use case of extracting references from German social
science research papers, no such data set is currently available. Lu et al. [Lu+13] show
a promising approach that allows a distantly supervised learning of CRFs using GE
criteria.

In the following, we will first discuss CRFs as well as distant supervision in general.
We will then consider our author extraction task and how a distantly supervised
approach can be applied to it.

2http://wiki.dbpedia.org/ (accessed Aug. 6, 2016)

6

http://wiki.dbpedia.org/

3. Conditional Random Fields (CRFs)

In this chapter, we give an introduction to the conditional random field (CRF) frame-
work. We first provide an overview of relevant concepts in probability theory and
graphical models. Following this, we will introduce the concept of CRFs and discuss
the inference and learning of CRF models.

In addition to relevant definitions, we use a simplified example of the author
extraction problem that we will discuss in Chapter 5. This example is based on the
set of four reference strings given in Figure 3.1.

3.1. Foundations

3.1.1. Probability Theory

Several concepts from probability theory are crucial for an understanding of CRFs
and they all build on the notion of probability distributions.

A probability distribution P is defined using two sets. The first set is the out-
come space Ω, which contains all possible outcomes of an experiment. The second
set is called event space S. It contains measurable events to which we can assign
probabilities [KF09]. Such a measurable event α is a subset of Ω: α ⊆ Ω.

Further, the following four properties must hold true for the event space [KF09]:

• It contains the empty event which consists of the empty set ∅.

• It contains the trivial event which is the set of all possible outcomes Ω.

• It is closed under union: If events α and β are in S , then so is α ∪ β.

• It is closed under complementation: If event α is in S, then so is Ω \ α.

To describe the relation between S and Ω, we first define the power set: A power
set of a set A is defined as the set of all possible subsets of A, including the empty set
∅ and the set A itself:

P(A) = {B | B ⊆ A} (3.1)

Using this, we can define event space S as a subset of the power set of the outcome
space Ω:

S ⊆ P(Ω).

7

Mia Friedrich (2010): Title of the first example, Berlin: Springer.
Müller, Friedrich (2010): Title of the second example, Berlin: Springer.
Max Müller, Fritz Schmidt (2010): Friedrich in title, Berlin: Springer.
Mia Wagner, Max Friedrich Schmidt (2010): Fourth title, Berlin: Springer.

Figure 3.1.: Example of four reference strings.

The probability distribution P now describes a mapping from events in S to real
numbers according to the following rules [KF09]:

• P (α) ≥ 0 for all α ∈ S.

• P (Ω) = 1.

• If α, β ∈ S and α ∩ β = ∅, then P (α ∪ β) = P (α) + P (β).

To clarify this using our author extraction example, we first define the outcome
space Ω as the set consisting of the four reference strings in Figure 3.1. More precisely,
a reference string consists of a sequence of words “w1 w2 . . . wN” where words are
separated by whitespaces and where N is the number of words in the sequence. For
simplicity reasons, N is the same for all four reference strings in Figure 3.1. We now
consider two events:

firstLN = {w1 . . . wN | w1 is a last name} .
secondEC = {w1 . . . wN | w2 ends with a comma} .

In other words, firstLN contains all reference strings in Ω in which the first word of
the sequence is a last name and secondEC contains all reference strings in Ω in which
the second word of the sequence ends with a comma.

To fulfill the three properties of an event space S, we need to introduce a number
of additional events. First, we add the empty event ∅ and the trivial event Ω to S.
Further, to fulfill the property of S being closed under complementation, we then
add the complement of firstLN and secondEC :

firstNotLN = Ω \ firstLN.
secondNotEC = Ω \ secondEC.

To fulfill the union property of S, we add all unions of events. Then, we again need
to add the complements of the newly added union of events. This repeats until all
possible unions and complements are added to S . Even for this simple example, the
resulting event space is already considerably big. In the following, we thereby to not
explicitly discuss the content of S.

8

We now consider the resulting probability distributions for this example. Based
on the four reference strings in Ω, we assign the corresponding probabilities to the
events in S. Examples for this are:

P (firstLN) = 1/4 = 0.25.

P (firstNotLN) = 3/4 = 0.75.

P (secondEC) = 2/4 = 0.5.

P (secondNotEC) = 2/4 = 0.5.

Note that, when building the sum over all assigned probabilities, we result in a
number greater than 1. When recalling the rules for probability distributions, we see
that the probability for the union of two events is only defined as the addition of
their probabilities if the intersection of the two events is the empty set. Thereby, our
defined probability distributions remain valid.

Another important concept in probability theory are random variables. A random
variable X is a function that associates a value with each outcome in Ω [KF09]. In
addition, Val(X) is the set of values that X can take. The elements in Val(X) are also
called assignments to X .

Following our example, we define the random variable LN1 as a function that,
given a reference string, returns the value true if the first word in the sequence is a
last name and the value false if it does not. This results in: Val(LN1) = {true, false}.
Similarly,EC2 is defined as the function that associates the value true with a reference
string if the second word ends with a comma and false if the second word does not
end with a comma.

Given a random variableX , P (X) is the probability distribution over Val(X) [KF09].
It is also referred to as the marginal distribution over X . An assignment of a concrete
value x ∈ Val(X) to X is denoted by P (X = x) or short P (x).

We can now define our probability distributions on random variables instead of
events, for example:

P (firstLN) = P (LN1=true)

P (secondNotEC) = P (EC2=false).

We now consider the concept of joint probability. Given two events α and β, the
joint probability P (α, β) corresponds to the probability of the intersection of the two
events [TT07]:

P (α, β) = α ∩ β.

This concept can also be applied to random variables. Given random variables X
and Y which are defined on the same event space S , we consider their joint distribution
P (X,Y). For the assignments x and y, P (X=x, Y=y) associates a probability with

9

the subset of Ω which is specified by x and y [KF09]. The joint distribution for more
than two random variables is defined accordingly.

In our example, P (LN1, EC2) has the following values:

P (LN1=false, EC2=false) = 1/4 = 0.25.

P (LN1=false, EC2=true) = 2/4 = 0.5.

P (LN1=true, EC2=false) = 1/4 = 0.25.

P (LN1=true, EC2=true) = 0/4 = 0.

A notation that is frequently used in this chapter is that of a set of random variables
X = {X1, . . . , XN}. The set of assignments to X is denoted by x = {x1, . . . , xN}
where each xn is an assignment to Xn ∈ X. The set of assignments x is also called
a full assignment to X. Any event that is described using X must be a union of full
assignments to X. In the following, we assume every outcome space Ω to be defined
as a set of full assignments to some set of random variables X . This is also called a
canonical outcome space [KF09].

We demonstrate this by extending our definitions of LN1 and EC2 and apply them
to all words in a reference string of length N . This gives us two sets of random
variables:

LN ={LN1, . . . , LNN}.
EC ={EC1, . . . , ECN}.

Using this, we define a canonical outcome space Ω as the set of all full assignments
to LN ∪EC.

The conditional probability of an event β given an event α with P (α) > 0 is defined
as [KF09]:

P (β | α) =
P (α ∩ β)

P (α)
. (3.2)

This definition can be extended to random variables. Given that the probability
for every assignment to X is greater than zero, the conditional probability distribution
(CPD) P (Y | X) is calculated with

P (Y | X) =
P (X,Y)

P (X)
(3.3)

and for sets of random variables X and Y we have:

P (Y | X) =
P (X,Y)

P (X)
. (3.4)

Again taking the reference strings in Figure 3.1, we have for example:

P (EC2=true | LN1=false) =
P (LN1=false, EC2=true)

P (LN1=false)
=

0.5

0.75
≈ 0.6667.

10

A value that can be used as a metric for comparing different probability distribu-
tions with each other is called expectation. Given a discrete random variable X , we
define the expectation E[X] of X under the distribution P as [KF09]:

E[X] =
∑

x∈Val(X)

x · P (x). (3.5)

To apply this definition to our example, we redefine Val(LN1) = {true, false}
as Val(LN1) = {1, 0} where we replace true and false with the values 1 and 0,
respectively. This gives us:

E[LN1] =
∑

x∈Val(LN1)

x · P (x)

= 1 · P (LN1=1) + 0 · P (LN1=0)

= 1 · 0.25 + 0 · 0.75

= 0.25.

3.1.2. Probabilistic Graphical Models

When encoding practical problems with probability distributions, a key insight is
that random variables often only interact with a low number of other random vari-
ables [KF09]. This makes it possible to represent such distributions as graphs in a
tractable and transparent way, allowing domain experts to evaluate their proper-
ties [KF09]. Probabilistic graphical models are such representations.

In a probabilistic graphical model, nodes represent the elements from the set of
random variables X of a probability distribution. An edge then denotes a probabilistic
interaction between its two incident nodes [KF09].

There are two fundamental groups of graphical models, based on the type of edge
that are used: Bayesian networks and Markov networks. Both models have in common
that their set of random variables X can be separated into two subsets: X contains the
so-called observed variables which usually represent specific features of the input. Y
contains the target variables which we usually want to infer using a graphical model.
We thereby haveX = {X∪Y}with X∩Y = ∅. Yet, there are fundamental differences
between Bayesian networks and Markov networks. In the following, we use our
previously discussed author extraction example and define X = {EC2, LN1, LN2}
with X = {EC2} and Y = {LN1, LN2}.

Bayesian networks, usually denoted by G, are encoded using directed edges to
build a directed acyclic graph [KF09]. Considering a graphical model that is based on
a Bayesian network, an edges from random variable A to random variable B models
a probabilistic influence of A on B. Since the graph is acyclic and due to the directed
probabilistic influences, it is possible to represent the joint distribution P (X,Y) as a

11

LN1 LN2

EC2

LN1 LN2

EC2

(a) (b)

Figure 3.2.: Two networks for X = {EC2, LN1, LN2}: (a) A Bayesian network and
(b) A Markov network.

product of marginal distributions and CPDs [SM10]. We refer to Koller and Friedman
[KF09] for a detailed introduction to Bayesian networks.

Figure 3.2 shows a Bayesian network for our author extraction example using the
above defined set of random variables X . The gray node represents an observed
variable and the white nodes represent target variables. From this we can derive the
following joint distribution:

P (EC2, LN1, LN2) = P (LN1)P (LN2|LN1)P (EC2 | LN1, LN2).

Markov networks, usually denoted byH, use undirected edges to model a sym-
metrical influence between two random variables. Because of this, it is not possible to
separate the joint distribution P (X) into marginal distributions and CPDs. Instead,H
is parameterized by a set of factors. A factor Ψ(D) is a function from a set of random
variables D to IR [KF09]. It is called nonnegative if all its entries are nonnegative. In
the following, we will consider all factors to be nonnegative. D is called the scope of
Ψ, as denoted by Scope[Ψ] [KF09].

Using the set of random variables X , we define the three factors in Table 3.1:
Ψ(LN1, EC2), Ψ(LN2, EC2), and Ψ(LN1, LN2). The values for the factors are calcu-
lated in the following way: For every reference string in Figure 3.1, which follows
the given assignments to a factor, we add 10 to the corresponding factor value.
The number 10 is chosen arbitrarily and, in a practical use case, determining this
number is part of the learning process (see Section 3.4). As an example, for three
of the four reference strings in Figure 3.1 we have LN1 = false and LN2 = true.
Thereby, Ψ(LN1 = false, LN2 = true) = 30. If, on the other hand, no reference
string agrees with the assignments, we set the factor value to 1. This value, again, is
chosen arbitrarily. The Markov network that results from the three factors is shown
in Figure 3.2. Again, the gray node marks an observed variable and white nodes
mark target variables.

An important operation on factors is the factor product. Given three disjoint sets
of assignments {X,Y,Z}, a factor product Ψ1 × Ψ2 of the two factors Ψ1(X,Y)

12

Ψ(LN1, EC2)

LN1 EC2 Value

false false 10
false true 20
true false 10
true true 1

Ψ(LN2, EC2)

LN2 EC2 Value

false false 10
false true 1
true false 10
true true 20

Ψ(LN1, LN2)

LN1 LN2 Value

false false 1
false true 30
true false 10
true true 1

Table 3.1.: Three factors for the author extraction example.

and Ψ2(Y,Z) is a factor Ψ(X,Y,Z) [KF09]. The intuition is that the two factors are
multiplied by aligning their common set of random variables Y.

One way of calculating the factor product of the three factors in Table 3.1 is the
following:

Ψ(LN1, EC2)×Ψ(LN2, EC2)Ψ(LN1, LN2)

= Ψ(LN1, LN2, EC2)×Ψ(LN1, LN2)

= Ψ(LN1, LN2, EC2).

Note that in general the Ψ(LN1, LN2, EC2) in line two and three are not the same.
The concrete values for Ψ(LN1, LN2, EC2) are shown in Table A.1. This demonstrates
why the values in Table 3.1 are greater than 0. If a value would be 0, all factor products
involving it would also be 0.

Using the definition of a factor product, we can now define an undirected pa-
rameterization of a probability distribution, called Gibbs distribution. A probability
distribution P (X1, . . . , XN) is a Gibbs distribution parameterized by a set of factors
{Ψ1(D1), . . . ,ΨK(DK)} if it is defined as [KF09]:

P (X1, . . . , XN) =
1

Z
P̃ (X1, . . . , XN)

P̃ (X1, . . . , XN) =
K∏
k=1

Ψk (Dk)

Z =
∑

X1,...,XN

P̃ (X1, . . . , XN) .

(3.6)

13

LN1 LN2

EC2

Ψ(LN1, LN2)

Ψ(LN2, EC2)

Ψ(LN1, EC2)

LN1 LN2

EC2

Ψ(LN1, LN2, EC2)

(a) (b)

Figure 3.3.: Two factor graphs, both resulting in the Markov network in Figure 3.2:
(a) Factor graph with three factors. (b) Factor graph with one factor. (cf.
[KF09])

Here, P̃ (X1, . . . , XN) is an unnormalized measure and Z is a normalizing constant,
sometimes called the partitioning function. It guarantees that the probability distri-
bution sums to 1. Having a Gibbs distribution P where each Dk, 1 ≤ k ≤ K is a
complete subgraph of a Markov networkH, we say that P factorizes overH [KF09].

Based on the two factors from Table 3.1, we now use Equation (3.6) to calculate
P (EC2 = false, LN2 = false, LN1 = true) ≈ 0.2976 (see Appendix A.2.1). For the
full distribution P (EC2, LN2, LN1) see Appendix A.2.2.

An intuition could be that factors are assigned to the edges of a Markov network
in order to parameterize it. Yet, such an assignment is only able to capture the
pairwise interactions between the two incident nodes [KF09]. In order to model
more complex interactions involving multiple nodes, a factor scope needs to allow an
arbitrary subset of nodes in H . Since a factor can be assigned to an arbitrary number
of nodes, visualizing Markov networks by only displaying the random variables
as nodes and pairwise interactions as edges is not sufficient. Instead, a factor graph
can be used. A factor graph F contains two types of nodes: Oval nodes to represent
random variables and squared nodes to represent factors [KF09]. Each factor node is
associated with exactly one factor Ψ and each variable node is associated with exactly
one random variable. The graph only contains undirected edges between factor
nodes and variable nodes. The scope of Ψ is the set of variables that are adjacent to
its corresponding factor node [KF09].

To demonstrate the necessity of such a notation, we consider two different factor
graphs in Figure 3.3 and their underlying Markov network. Factor graph (a) contains
the three factors from Table 3.1. By taking the factor product of these three factors we
construct factor graph (b). When analyzing the pairwise interactions between the
nodes via the given factors, we can see that both (a) and (b) are based on the Markov
network shown in Figure 3.2.

14

ε(LN1, EC2)

LN1 EC2 Value

false false − ln(10) ≈ −2.3026
false true − ln(20) ≈ −2.9957
true false − ln(10) ≈ −2.3026
true true − ln(1) = 0

ε(LN2, EC2)

LN2 EC2 Value

false false − ln(10) ≈ −2.3026
false true − ln(1) = 0
true false − ln(10) ≈ −2.3026
true true − ln(20) ≈ −2.9957

ε(LN1, LN2)

LN1 LN2 Value

false false − ln(1) = 0
false true − ln(30) ≈ −3.4012
true false − ln(10) ≈ −2.3026
true true − ln(1) = 0

Table 3.2.: Energy functions for the factors in Table 3.1.

As stated before, a graphH is parameterized by a set of factors. Another way to
parameterizeH is by converting the set of factors into the log-space [KF09]. We can
rewrite a factor Ψ(D) as

Ψ(D) = exp(−ε(D))

where ε(D) = − ln Ψ(D) is called energy function [KF09].
Being in the log-space, the probability distribution over a set of random variables

is proportional to the exponential of the sum of its energy functions [KF09]:

P (X1, . . . , XN) ∝ exp

{
−

K∑
k=1

εk (Dk)

}
. (3.7)

In Table 3.2 we apply the energy function to the three factors in Table 3.1. As we
can see, values that were 1 in Table 3.1 are now 0.

Using the fact that in practice many values of an energy function ε(D) are 0, it is
possible to represent its information in a more compact way. This is done using a
number of feature functions f(D) and the same number of weights θ.

For example, we can represent ε(LN1, LN2) from Table 3.2 as the sum over the two
indicator functions

f1(LN2, LN1) = 1 {LN2=true, LN1=false}
f2(LN2, LN1) = 1 {LN2=false, LN1=true}

which are multiplied with the weights θ1=− ln(30) and θ2=− ln(10):

ε (LN2, LN1) = (− ln(30) · f1(LN2, LN1)) + (− ln(10) · f2(LN2, LN1)) .

15

Given the assignments LN2=false and LN1=true , we have:

ε (LN2=false, LN1=true) = (− ln(30) · f1(LN2=false, LN1=true))

+ (− ln(10) · f2(LN2=false, LN1=true))

= (− ln(30) · 0) + (− ln(10) · 1)

= − ln(10).

Based on Equation (3.7), we can now define a probability distribution P overH as

P (X1, . . . , XN) =
1

Z
exp

{
−

K∑
k=1

θkfk (Dk)

}
(3.8)

where θ1, . . . , θK are weights and f1(D1), . . . , fK(DK) are feature functions with
each Dk being a complete subgraph inH [KF09]. Note that K in Equation (3.8) does
not have to be equal to K in Equation (3.7). This probability distribution is called a
log-linear model.

In addition to Bayesian networks and Markov networks we can further distinguish
between generative models and discriminative models. Given a set of observed variables
X and a set of target variables Y with X ∩Y = ∅, a generative model encodes the
joint distribution P (Y,X). A discriminative model, on the other hand, encodes the
conditional probability distribution P (Y|X) [KF09]. More precisely, for a generative
model we have P (Y,X) = P (Y)P (X|Y). We thereby consider how the output of the
model is generated as a function of the input [SM10]. This leads to the main difference
between the two models, namely that for a discriminative model we do not need to
model P (X). Sutton and McCallum [SM10] argue that indeed the modeling of P (X)
in generative models leads to a number of difficulties and limitations. According to
them, P (X) often contains a number of highly dependent features which restrict the
modeling. For example, in natural language processing (NLP) tasks, we often model
word-identities as features. Having a limited training set, we frequently have words
that were unseen during training. In order to still give a reasonable classification
for unseen words, it would be beneficial to also include other features in addition to
just the word-identities [SM10]. As an example, such features could encode whether
a word is capitalized or if it appears in a name dictionary. However, such features
are highly dependent on each other. Moreover, their dependencies would need to
be represented in a generative model which is often intractable in practice [SM10].
Discriminative models on the other hand can leverage such a combination of features
despite their high dependencies since P (X) is not modeled [KF09].

Since, in generative models, P (Y) is a prior distribution and P (X|Y) a CPD, Sutton
and McCallum [SM10] argue that these are more naturally modeled by the directed
Bayesian network. Consequently, because there is no prior distribution in discrim-
inative models, it is argued that they are more naturally modeled by a Markov
network [SM10].

16

After introducing some of the fundamental concepts we will now discuss CRFs. In
the following sections we will address how to encode, inference, and learn them.

3.2. Encoding of CRFs

A popular framework for building probabilistic graphical models is conditional random
fields (CRFs). Proposed by Lafferty, McCallum, and Pereira [LMP01], the initial goal
was the segmentation and labeling of sequential data. A main motivation for CRFs is
to overcome a label bias problem that other discriminative Markov networks such as
maximum entropy Markov models (MEMMs) tend to have [LMP01]. Lafferty, McCallum,
and Pereira [LMP01] argue that this is due to the per-state models which are used
in models such as MEMMs to represent conditional probabilities. This can lead to
a bias towards states which have fewer outgoing transitions [LMP01]. In order to
overcome this bias, CRFs do not have per-state models but instead contain a single
model to represent the joint distribution of a set of target variables given a set of
observed variables [LMP01].

CRFs encode the conditional probability distribution P (Y|X) where Y is a set
of target variables and X is a set of observed variables with Y ∩ X = ∅. A CRF
is constructed using a Markov network H where the nodes correspond to Y ∪ X
and the undirected edges model a symmetrical influence between the nodes (see
Section 3.1.2) [KF09]. Given a set of factors {Ψ1(D1), . . .ΨK(DK)} that factorize over
H, a CRF defines P (Y | X) as [KF09]:

P (Y | X) =
1

Z(X)
P̃ (Y,X)

P̃ (Y,X) =

K∏
k=1

Ψk (Dk)

Z(X) =
∑
Y

P̃ (Y,X).

(3.9)

Here, similar to the Gibbs distribution in Equation (3.6), P̃ (Y,X) is the unnormalized
measure and Z(X) is a normalizing constant [KF09]. Additionally, we have that
Dk ⊆ X ∪Y and Dk 6⊆ X. In other words, Dk needs to contain at least one Yn ∈ Y.

In Appendix A.2.1 we demonstrate that in the case of Dk ⊆ X the term Ψk(Dk)
“cancels out” during the calculation of P (Y | X).

This behavior for a Dk ⊆ X is the result of the only difference between the
definition of a Gibbs distribution in Equation (3.6) and the definition of a CRF
above, namely how the normalizing constant Z is defined [KF09]. In Equation (3.6),
Z normalizes P̃ (X1, . . . , XN) with a sum over all X1, . . . , XN resulting in a joint
distribution P (X1, . . . , XN). However, in Equation (3.9), Z(X) normalizes P̃ (Y,X)
with respect to the given X. This way of normalizing results in the conditional
probability distribution P (Y | X) (cf. Equation (3.4)).

17

Appendix A.3.2 contains P (LN1=true, LN2=false | EC2=false) as an exemplary
calculation according to the factors in Table 3.1.

Using Equation (3.8), we can reformulate the definition of CRFs in Equation (3.9)
as a log-linear model:

P (Y | X) =
1

Z(X)
P̃ (Y,X)

P̃ (Y,X) = exp

{
−

K∑
k=1

θkfk (Dk)

}
Z(X) =

∑
Y

P̃ (Y,X).

(3.10)

This representation allows us to encode a CRF model more compactly using feature
functions instead of factors. This will become more clear in the following discussion.

A specific kind of CRF that follows a rather simple structure are linear-chain CRFs.
For a given set of observed variables X = {X1, . . . , XN} and target variables Y =
{Y1, . . . , YN}, we consider two types of factors:

• Ψn(Yn, Yn−1) models the dependency between Yn and its in the sequence pre-
ceding Yn−1.

• Ψn(Yn, X̃n) models the dependency between Yn and its context given by X̃n =
{X̃1, . . . , X̃T } with X̃n ⊆ X. The number of random variables in X̃n can be
different for every X̃n.

Inserting the two factors in Equation (3.9) results in:

P (Y | X) =
1

Z(X)
P̃ (Y,X)

P̃ (Y,X) =
N∏

n=1

(
Ψn

(
Yn, Yn−1

)
×Ψn

(
Yn, X̃n

))
Z(X) =

∑
Y

P̃ (Y,X).

(3.11)

We now can represent the two factors using the following feature functions:

f̃k

(
Yn, Yn−1

)
def
= fj,i

(
Yn, Yn−1

)
= 1

{
Yn = j, Yn−1 = i

}
f̃l

(
Yn, X̃n

)
def
= fj,h

(
Yn, X̃n

)
= 1

{
Yn = j, X̃n = h

}
.

(3.12)

Here, i and j are predefined assignments and h is a set of predefined assignments
with |h| = |X̃n|. 1 is an indicator function that returns 1 if all listed assignments

18

start LN1 LN2

EC1 EC2

Ψ(start, LN1) Ψ(LN1, LN2)

Ψ(LN1, EC1) Ψ(LN2, EC2)

Figure 3.4.: Linear-chain CRF derived from the author extraction example.

match the predefined values. The f̃ notation and its indices will later allow us to
iterate over the predefined feature functions in a more compact way.

In other words, the feature functionf̃k(Yn, Yn−1) models a specific dependency
between the neighboring target variables Yn and Yn−1. Feature function f̃l(Yn, X̃n)
models a specific dependencies between the target variable Yn and a set of observed
variables X̃n in the context of Yn.

By inserting the two types of feature functions from Equation (3.12) into Equa-
tion (3.10), we define linear-chain CRFs as:

P (Y | X) =
1

Z(X)
P̃ (Y,X)

P̃ (Y,X) = exp

{
−

N∑
n=1

(
K∑
k=1

θkf̃k

(
Yn, Yn−1

)
+

L∑
l=1

θlf̃l

(
Yn, X̃n

))}
Z(X) =

∑
Y

P̃ (Y,X).

(3.13)

Thereby, for every Yn, we iterate over K predefined feature functions f̃k and L
predefined feature functions f̃l. Additionally, we have a set of parameters θ which
are multiplied with the two different feature functions. θ thereby contains K + L
parameters. In order to simplify the notation, we define Y0 as a special start state
which is denoted by start [LMP01].

An example for a linear-chain CRF derived from our author example is shown in
Figure 3.4. The two added factors Ψ(start, LN1) and Ψ(LN1, EC1) are shown in
Appendix A.4.1 and Appendix A.4.2. We do not show the values for the resulting
factor product due to its size of 25=32 entries. Note that in Figure 3.4, we do not use
the factor Ψ(LN1, EC2).

Returning to our argument that feature functions are a move compact encoding
of CRFs than factors, we show the feature functions and corresponding weights
in Appendix A.4.3 for the linear-chain CRF in Figure 3.4. This gives us 9 pairs of
feature functions and weights instead of the 4 · 4 = 16 entries in the factor tables. In
Appendix A.4.4, we show an exemplary calculation for

P (start=true, LN1=true, LN2=false | EC1=true, EC2=false).

19

Sutton and McCallum [SM10] show that hidden Markov models (HMMs) are a
restricted kind of linear-chain CRF. We result in a HMM when X̃n in Equation (3.13)
only includes one observed variable Xn which corresponds to the word’s identity at
the current position n.

3.3. Inference of CRFs

Given a probability distributions over a set of random variables X , a goal can be to
answer specific questions about this distribution. These are formulated as queries
which are then run against the probability distributions. One type of queries are called
probability querys. A probability query consists of X = X ∪Y with X ∩Y = ∅ [KF09].
The set of random variables X is called the evidence and contains the observed
variables. The second set Y contains the target variables. Based on this, the query
is formulated as P (Y|X = x) where x is a full assignment to X [KF09]. We thereby
want to compute the posterior probability distribution over the assignments y to Y
given the conditioning X = x [KF09].

We now consider the inferencing task for probability querys P (Y|X = x). Sutton
and McCallum [SM10] distinguish two kinds of inference problems:

1. Given a trained model and X = x, predict the most likely assignment Y = ŷ
using

arg max
ŷ

P (Y = ŷ | X = x) (3.14)

which in the case of CRFs is equivalent to

arg max
ŷ

P̃ (X = x,Y = ŷ). (3.15)

2. Given a trained model and X = x, compute the normalizing constant

Z(X = x) =
∑
Y

P̃ (X = x,Y). (3.16)

By replacing the summation operator over Y in Equation (3.16) with the arg max
function, we effectively obtain Equation (3.15). Thereby, the two kinds of inference
problems are based on the same underlying operation [SM10]. In the following
we will focus on the inference of the normalizing constant Z(X) in the context of
linear-chain CRFs. An approach to the prediction task can be derived from it.

In order to show the computational complexity of this inferencing task, we will
consider linear-chain CRFs on a factor level. According to Equation (3.11) we have:

Z(X) =
∑
Y

(
N∏

n=1

(
Ψn

(
Yn, Yn−1

)
×Ψn

(
Yn, X̃n

)))
. (3.17)

20

Since we calculate the factor product for every possible joint assignment ỹ ∈ Val(Y),
the computation of Z(X) is exponential in N , the number of random variables in Y:

|Val(Y)| = 2N . (3.18)

Yet, in the case of linear-chain CRFs, it is possible to reduce the complexity of
calculating Z(X) by using the forward-backward algorithm, sometimes referred to
as dynamic programming or variable elimination [SM10; KF09]. The key insight
of the forward-backward algorithm is that during the naïve calculation of, in our
case, Z(X), partial calculations are repeated exponentially often. In order to prevent
unnecessary repetitions of the same calculations, intermediate results are stored and
reused. The following derivation of the forward-backward algorithm for linear-chain
CRFs is based on Sutton and McCallum [SM10]. They use it for the calculation of
P (X) for HMMs.

First, we reorder Equation (3.17) by applying the distributive law:

Z(X) =
∑
YN

∑
YN−1

(
ΨN

(
YN , YN−1

)
×ΨN

(
YN , X̃N

))

×

∑
YN−2

(
ΨN−1

(
YN−1, YN−2

)
×ΨN−1

(
YN−1, X̃N−1

))
. . .

 .

(3.19)

As we can see, the inner sums are used multiple times by the outer sums. In a naïve
approach, these inner sums would be recalculated every time they appear in an outer
sum. Instead, our goal is to calculate the inner sums once and store their result for
later usage.

In order to find a recursive definition of Z(X) that allows the reuse of intermediate
calculations, we first consider

Z(X, YN = j) =
∑

Y1,...YN−1

((
ΨN

(
j, YN−1

)
×ΨN

(
j, X̃N

))

×
N−1∏
t′=1

(
Ψt′

(
Yt′ , Yt′−1

)
×Ψt′

(
Yt′ , X̃t′

))) (3.20a)

where we have YN = j and where the calculations including j are isolated from the
product over all other calculations.

21

Since we only use the assignments YN−1 from the sum over Y1, . . . , YN−1 in the
two factors ΨN , we can rewrite Equation (3.20a) as

Z (X, YN = j) =
∑
YN−1

(ΨN

(
j, YN−1

)
×ΨN

(
j, X̃N

))

×
∑

Y1,...,YN−1

N−1∏
t′=1

(
Ψt′

(
Yt′ , Yt′−1

)
×Ψt′

(
Yt′ , X̃t′

)) (3.20b)

and using the definition of Z(X) in Equation (3.17) we arrive at

Z (X, YN = j) =
∑
YN−1

((
ΨN

(
j, YN−1

)
×ΨN

(
j, X̃N

))
×Z

(
X1, . . . , XN−1

))
.

(3.20c)

Generalizing from this case, we can now define

αn(j) =
∑
i∈Y

((
Ψn

(
j, i
)
×Ψn

(
j, X̃n

))
× αn−1(i)

)
(3.21)

where the position of assignment i in Y is derived from the definition Ψn(j, i).
Thereby, if Yn = j then i is an assignment to Yn−1. The base case for the recursion is
defined as

α1(j) = Ψ1

(
j, Y0

)
×Ψ1

(
j, X̃1

)
(3.22)

where Y0 again is the start state. Since the calculation is recursive in a way that αn

is calculated using the result of αn−1, we refer to αn as a forward variable [SM10]. In
order to calculate Z(X) using αn(j), we calculate the sum over all full assignments
to Y, resulting in

Z(X) =
∑
Y

αT (Y) (3.23)

where T = |Y|.

Even though the forward variable αn is sufficient for calculating Z(X), other
calculations may also require a backward variable βn [SM10]. Its difference to αn is
that the recursion expands in the opposite direction such that the calculation of βn
uses the result of βn+1:

βn(i) =
∑
j∈Y

((
Ψn+1

(
j, i
)
×Ψn+1

(
j, X̃n+1

))
× βn+1(j)

)
. (3.24)

Due to the opposite direction, the base case for the recursion is defined as βN (i) = 1.
Note the inverted usage of i in βn(i) and j in βn+1(j) in comparison to the usage in
Equation (3.21) for αn. We can also calculate Z(X) using βn with

Z(X) = β0 (Y0)
def
=
∑
Y1

((
Ψ1

(
Y1, Y0

)
×Ψ1

(
Y1, X̃1

))
× β1 (Y1)

)
(3.25)

22

in order to correctly handle the start state Y0. Again, the definitions of αn and βn
are derived from Sutton and McCallum [SM10] and their example for HMMs.

As mentioned before, this approach can also be applied to the problem of finding
the most likely full assignment to the target variables Y (see Equation (3.15)). This
is done by replacing all summations by a maximization term [SM10]. The resulting
approach is called the Viterbi algorithm.

When applying the forward-backward algorithm to linear-chain CRFs, we exploit
their sequential structure. Yet, not all CRF models follow such a structure and thereby
we can not always apply this algorithm. A number of alternative algorithms for both
exact and approximate inference for such general graphs exist. An example for exact
inference is based on clique trees. For approximate inferencing, one approach is loopy
belief propagation [KF09]. Since our approach on author extraction uses linear-chain
CRFs, we will not further discuss these alternatives. We refer to Koller and Friedman
[KF09] for further readings on this topic.

In the following section, we will discuss methods for learning CRFs. In particular,
we will look into the parameter estimation of the set of weights θ that is assigned to
feature functions, for example in Equation (3.13).

3.4. Learning of CRFs

After discussing the encoding and inference of CRFs, we now look into their learning.
The main focus of this section will be on the learning of the parameters θ in the
log-linear model representation of CRFs, such as the one in Equation (3.13).

Constructing CRF models manually is time costly and requires domain knowledge.
To acquire such knowledge, experts from this domain often need to be involved. In
some cases, experts with a sufficient understanding of the domain do not exist [KF09].
Yet, we now often have access to a large body of example instances which originate
from the distribution we want to model [KF09]. A promising approach is thereby
to learn a model M̃ based on such a set of examples. More formally, we assume a
given labeled data set D = {d (1), . . . , d (M)} of M instances with d (m) = X(m) ∪Y(m)

and X(m) ∩ Y(m) = ∅. We further assume that D follows an underlying distribu-
tion P ∗ which is induced by a networkM∗ = (K∗,θ∗) where K∗ is a graph and θ∗

are model parameters [KF09]. Lastly, we assume that the elements in D are sam-
pled independently from P ∗ and are thereby independent and identically distributed
(IID) [KF09].

Learning a model M̃ that exactly induces P ∗ is often unfeasible in practice due to
computational limitations. Further, D only provides an approximation of P ∗ [KF09].
Instead, the goal is to find a M̃ which provides the “best” approximation to M∗

23

given our D. There exists a number of metrics for deciding which M̃ approximates
M∗ “best”.

A popular metric that is used for CRFs is maximum likelihood. Before discussing
it, it is important to clarify which part of M̃ = (K̃, θ̃) we aim to learn. Since we will
later perform the parameter estimation by a repeated inferencing on M̃, efficient
inferencing is crucial to the runtime performance of the learning algorithm. As
discussed in Section 3.3, the forward-backward algorithm for efficient inferencing
can only be applied if K̃ follows a certain sequential structure. Linear-chain CRFs
provide such a sequential structure for K̃ (see Equation (3.13)). In the following, we
assume K̃ to be modeled to form a linear-chain CRF and to be given as an input to
the learner. We will thereby focus on the learning of the set of parameters θ̃ which
in the case of linear-chain CRFs are the θk and θl for the two feature functions in
Equation (3.13). A function that evaluates the performance of a model M̃with θ̃ is
called an objective function [KF09].

Given a data set D, we define the likelihood function L(θ̃ : D) as

L
(
θ̃ : D

)
=

M∏
m=1

P
(
Y(m)|X(m)

)
(3.26)

where P is derived from the graphical model M̃ = (K̃, θ̃). A common approach is to
calculate the log-likelihood function instead of the likelihood function itself [KF09; SM10;
MM10]. This is possible since the log-likelihood function is monotonically related to
the likelihood function and thereby the maximization problems are equivalent [KF09].
A computational advantage of using the log-likelihood function is that it is calculated
over sums instead of products [KF09].

The log-likelihood function is defined as [SM10]

`
(
θ̃ : D

)
=

M∑
m=1

(
logP

(
Y(m)|X(m)

))
(3.27)

where log refers to the natural logarithm.
In order to illustrate the calculation, we now look at a more concrete example

of a log-likelihood function. Using the definition of linear-chain CRFs from Equa-
tion (3.13), we substitute P (Y(m)|X(m)) in Equation (3.27) which gives us:

`
(
θ̃ : D

)
=

M∑
m=1

(
log

(
1

Z
(
X(m)

) exp

{
−

N∑
n=1

(
K∑
k=1

θkf̃k

(
Y (m)
n , Y

(m)
n−1

)
+

L∑
l=1

θlf̃l

(
Y (m)
n , X̃(m)

n

))}))
.

(3.28a)

24

We can simplify this by resolving the log statement which results in:

`
(
θ̃ : D

)
=

M∑
m=1

(
−

N∑
n=1

(
K∑
k=1

θkf̃k

(
Y (m)
n , Y

(m)
n−1

)
+

L∑
l=1

θlf̃l

(
Y (m)
n , X̃(m)

n

))

− log
(
Z
(
X(m)

)))
.

(3.28b)

Using the forward-backward algorithm, we can efficiently calculate the normalization
constant Z(X(m)) as shown in Section 3.3.

In Appendix A.5, we demonstrate the calculation of `(θ̃ : D) for the linear-chain
CRF shown in Figure 3.4. For this, we have D = {d (1), . . . , d (4)} consisting of the
four reference strings in Figure 3.1. The set of feature functions and corresponding
weights θ̃ is given in Table A.5 and Table A.6.

Sutton and McCallum [SM10] discuss that a model M̃ can overfit the given data
set D when the number of parameters in θ̃ is too high. It is thereby common to use a
regularization term that forms a penalty based on the norm of θ̃ where θ̃ is seen as a
vector [KF09; SM10].

An example for such a term is a Gaussian prior. Given the parameters θ as a
vector, it uses the Euclidean norm of θ with a regularization parameter 1/2σ2 [SM10].
The regularization parameter σ2 can be empirically estimated from the training
data [CR99]. This gives us the following definition of a Gaussian prior [SM10]:

Gauss(θ) =

I∑
i=1

θ2i
2σ2

. (3.29)

Applying the Gaussian prior to Equation (3.28b) gives us:

`
(
θ̃ : D

)
=

M∑
m=1

(
−

N∑
n=1

(
K∑
k=1

θkf̃k

(
Y (m)
n , Y

(m)
n−1

)
+

L∑
l=1

θlf̃l

(
Y (m)
n , X̃(m)

n

)))

− logZ
(
X(m)

)
−

(
K∑
k=1

θ2k
2σ2

+
L∑
l=1

θ2l
2σ2

)
.

(3.30)

In Chapter 4 we discuss an additional regularization term based on the concept of
generalized expectation.

After demonstrating a calculation of `(θ̃ : D) for linear-chain CRFs, we now want
to find the set of parameters θ̂ ∈ Θ such that `(θ̂ : D) has the maximum value
regarding a predefined graph K̃. Here, Θ is the set of all possible sets of parameters
θ̃. This task is referred to as maximum likelihood estimation and when considering the
log-likelihood function is defined as [KF09]:

`
(
θ̂ : D

)
= max
θ̃∈Θ

`
(
θ̃ : D

)
. (3.31)

25

When discussing the maximization problem, an important term is the gradient of a
function. The gradient∇f of an objective function fobj(θ̃) with θ̃ = θ̃1, . . . , θ̃I is the
vector of the partial derivatives [KF09]:

∇f =

〈
∂f

∂θ̃1
, . . . ,

∂f

∂θ̃I

〉
. (3.32)

The first step in finding θ̂ is to find a θ̃ for which ∇f = 0. Applied to our log-
likelihood function, we thereby have to solve the following equation [KF09]:

∂

∂θi
`
(
θ̃ : D

)
= 0 i = 1, . . . , I. (3.33)

We refer to Sutton and McCallum [SM10] and Koller and Friedman [KF09] for further
information on how to calculate these partial derivatives. The resulting θ̃ is called a
stationary point of the function ` and can be a local maximum, a local minimum, or a
saddle point [KF09]. There are multiple ways of controlling if θ̃ is a local maximum,
for example by checking the second derivative of `(θ̃ : D). If it is negative then θ̃ is a
local maximum [KF09].

Sutton and McCallum [SM10] argue that in the case of linear-chain CRFs, the
function `(θ̃ : D) in Equation (3.30) is concave. Thereby, during the optimization of `,
every local optimum is also a global optimum [SM10].

A typical approach to the optimization uses gradient ascent methods [KF09]. Start-
ing with an arbitrary θ̃, the goal is to follow the slope of θ̃ by iteratively modifying
the θ̃ and recalculating the gradient ∇f . This is done until a maximum is reached.
Yet, since this approach requires many calculations of ∇f , it can be infeasible in
practice [SM10].

Several improvements to this have been made that aim to reduce the number
of such calculations. This is often done by taking information from the second
derivative of the objective function into account [SM10]. Since the matrix of all second
derivatives, called the Hessian, is quadratic in the number of parameters, computing
the full Hessian can again be infeasible [SM10]. By approximating the Hessian with
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm and limiting its memory
requirements, Byrd, Nocedal, and Schnabel [BNS94] provide an approach called
L-BFGS to the maximization problem that can handle a large number of parameters.
Andrew and Gao [AG07] state that L-BFGS “is the algorithm of choice for optimizing
the parameters of large-scale log-linear models with L2 regularization” [AG07]. L2

regularization is an alternative to the Gaussian prior in Equation (3.29).

After having giving an overview of the encoding, inferencing, and learning of
CRFs, we will discuss how to incorporate distant supervision in the CRF learning
process in Chapter 4.

26

4. Distant Supervision

The common approach for the learning of CRFs is to use manually labeled instances.
This results in an accurate labeling in most cases but is expensive Thereby, it can
only be performed on relatively small data sets. The approach of distant supervision
allows the automated labeling of large data sets by using heuristics and external
sources of information.

In this chapter, we will first give an overview of distant supervision by discussing
past usages. We will then discuss approaches on how CRFs can be learned using
distantly supervised data sets.

4.1. Overview

The term distant supervision was introduced by Mintz et al. [Min+09] as an approach
for relation extraction without labeled data. They state that distant supervision
extends the paradigm used by Snow, Jurafsky, and Ng [SJN05] for the extraction
of hypernym relations. A hypernym can be seen as a generic term and a hyponym
is a subtype or instance of this generic term [SJN05]. A first step for extracting
such relations was to learn dependency paths from hypernym/hyponym word pairs
that were extracted from the lexical database WordNet1 [SJN05]. The dependency
paths were then used as features in a Logistic Regression classifier with the task of
identifying hypernym pairs in a corpus [SJN05]. Additionally, Mintz et al. [Min+09]
mention a similarity of distant supervision to the usage of weakly labeled data in
bioinformatics. One mentioned example is how Craven and Kumlien [C+99] extract
relations between biological objects such as proteins, cell-types, and diseases from
a text corpus. For this, they train a Naïve Bayes classifier with data from the Yeast
Protein Database [PG97]. Surdeanu et al. [Sur+12] even state that distant supervision
for information extraction was introduced by Craven and Kumlien [C+99].

While not giving a definition of the term, Mintz et al. [Min+09, p. 2] state that “[t]he
intuition of distant supervision is that any sentence that contains a pair of entities
that participate in a known freebase relation is likely to express that relation in some
way.” There is now a body of research that uses the paradigm of Mintz et al. [Min+09]
for relation extraction [BHB11; R+11; NM11; TSN12; Xu+13].

There exists another intuition of distant supervision which is not based on leverag-
ing existing knowledge bases such as Freebase or WordNet: Go, Bhayani, and Huang

1https://wordnet.princeton.edu/ (accessed Aug. 6, 2016)

27

https://wordnet.princeton.edu/

[GBH09] use emoticons in Twitter2 tweets as noisy labels to build a training set for
sentiment analysis [GBH09]. This approach to sentiment analysis was also used in a
number of other researches [PB12; MC12; SI13].

Fan and Kim [FK15] also apply distant supervision without using a knowledge
base. They rely on a simple heuristic for localizing tables in research articles by
considering the context around a line starting with “Table” or “Tab.” as a potential
table.

To cover the different applications of distant supervision, a definition of the term
would need to be rather generic. What all automated approaches have in common
is that they use some heuristic to assign labels to previously unlabeled data. These
labels are used during the training, either in addition to preexisting labeled data or
on their own.

Our usage of the term distant supervision on the other hand focuses on the uti-
lization of an external knowledge base to perform the labeling. Thereby, we define
distant supervision as the labeling of a data set using an external knowledge base
with the goal of generating a training data set.

4.2. Distant Supervision and CRFs

Data sets that are used within a distantly supervised learning approach are typically
incompletely annotated. This is due to the fact that, in practice, external knowledge
bases do not cover all observed cases in the training set. As a result, conventional CRF
learning algorithms cannot be directly applied to such data sets since they require a
fully annotated input [Tsu+08].

To make this more clear, recall that for CRFs we have Dk 6⊆ X for every k =
1, . . . ,K (see Section 3.2). In other words, every set of random variables Dk needs
to contain at least one Yn ∈ Y. Otherwise, the term containing Dk is canceled out
during the calculation of P (Y | X) due to the normalization constant Z(X) (see
Appendix A.2.1 for an exemplary calculation). Thereby, the question arises on how
data sets are handled where not every element is labeled.

In this section, we will discuss two approaches that use incompletely annotated
data for the learning of CRFs. First we look at the approach of Tsuboi et al. [Tsu+08]
who apply a marginalization by generating all possible sequences that agree with
the incompletely annotated data. Then, we will present the approach of generalized
expectation (GE) proposed by Mann and McCallum [MM07]. GE can be used to form
an objective function for unlabeled data based on label regularization. As discussed in
Chapter 2, Lu et al. [Lu+13] also apply GE to learn CRFs with distantly supervised
data sets.

2https://twitter.com/ (accessed Aug. 6, 2016)

28

https://twitter.com/

4.2.1. Marginalization

Given a sequence of length N , Tsuboi et al. [Tsu+08] define an incomplete annotation
L as a sequence of subsets of possible assignments to the target variable at each
position n [Tsu+08]:

L = {L1, . . . ,LN}
Ln ∈ P(Val(Yn)) \ {∅}.

(4.1)

Here, P(Val(Yn)) is the power set of the set of possible assignments to Yn. Using the
definition of L, we can now specify two cases of incomplete annotations: Partial
annotations and ambiguous annotations. A partial annotation refers to a sequence
where only a subset of the elements is annotated. For an element at position n that
is not annotated, Ln contains all possible annotations and thereby |Ln| = |V al(Yn)|.
Ambiguous annotations are represented in such a way that the number of random
variables in Ln equals the number of possible annotations for the corresponding
element with |Ln| ≤ |V al(Yn)|.

Again using the author extraction example from Chapter 3, we define an incom-
plete annotation regarding the target variable LNn for the third reference string in
Figure 3.1:

LLN ={{false}, {true}, {false}, {false, true}, {true},
{false}, {false}, {false}, {false}, {false}}.

Thereby, the word w4=“Friedrich” is ambiguously annotated as either a last name
or not a last name. This can also be seen as a partial annotation since |L4| =
|V al(LN4)|.

We can now formalize the marginalization approach by Tsuboi et al. [Tsu+08]
which allows the application of an incomplete annotation L to a CRF model. For this,
we let YT be the set of all full assignments that are consistent with L [Tsu+08]:

P (L | X) =
∑
YL

P (YL | X) . (4.2)

Based on our incomplete annotation LLN , we have the following set of full assign-
ments:

YLLN
= {{LN1=false, LN2=true, . . . , LN4=false, . . . , LN10=false}
{LN1=false, LN2=true, . . . , LN4=true, . . . , LN10=false}} .

Using this approach, we can directly apply all discussed concepts for the encoding,
inferencing, and learning of CRFs on the CPD in Equation (4.2).

Yet, there are a number of possible issues with this marginalization approach. One
such issue is that the number of all possible full assignments in YL is exponential in

29

the number of incomplete elements U in the sequence [Tsu+08]. Tsuboi et al. [Tsu+08]
argue that this problem can be addressed by applying the Markov assumption and
using a modification of the forward-backward algorithm (see Section 3.3).

Another issue is that the log-likelihood function derived from Equation (4.2) is
not concave [Tsu+08]. Thereby, during the maximum log-likelihood estimation (see
Section 3.4), a local maximum is not necessarily a global maximum which needs to
be considered during the learning phase.

Further, when examining the marginalization of ambiguous annotations, it is not
possible to provide additional information on the distribution of possible assign-
ments. In this form, the model does not allow us to specify a marginal distribution
over the elements in Ln, which is considered during the marginalization. This is espe-
cially problematic when considering the implementation using distantly supervised
learning. The resulting labelings will often be ambiguous but the probabilities for
the different possible labels can be estimated from the external knowledge base. In
Chapter 5 we will discuss a concrete example for such a scenario.

4.2.2. Generalized Expectation (GE)

Instead of marginalizing incomplete annotations, Mann and McCallum [MM08]
apply the concept of generalized expectation (GE) on the training of linear-chain CRFs.
GE was first proposed in Mann and McCallum [MM07] under the name expectation
regularization as a method for semi-supervised learning.

In general, a GE criterionG(θ̃ : U) is a score function S which is defined as [MM10]:

G(θ̃ : U) = S
(
EU
[
EP (Y|X) [G(X,Y)]

])
. (4.3)

Here, P (Y|X) is a CPD based on the model M̃ = {K̃, θ̃}. U =
{

u(1), . . . , u(M)
}

is a data set of M unlabeled instances such that u(m) = X(m) (compare with D in
Section 3.4). EU and EP (Y|X) are expectations of U and P (Y|X), respectively (see
Section 3.1.1). G(X,Y) is given as a constraint function. Note that in contrast to the
previously discussed CRF models, we do not necessarily have |X| = |Y|. Instead, we
have |X| ≥ |Y|.

To clarify this general definition, we now look at one possible score function S,
namely the Kullback–Leibler (KL) divergence. The KL divergence DKL is a measure of
“discrepancy” between two probability distributions P1(X) and P2(X) whereX again
is a set of random variables [BA03]. This measure is also referred to as a “distance”
between P (X) and Q(X). Yet, this term can be misleading since the measure is not
symmetric: DKL(P || Q) 6= DKL(Q || P) [BA03]. The KL divergence is is defined
as [Mac03]:

DKL(P || Q) =
∑
X

P (X)

Q(X)
(4.4)

Here, P is seen as the “true” distribution and Q as a distribution that models
P1 [BA03].

30

We now use the KL-divergence as the score function DKL in Equation (4.3) which
gives us [MM10]:

G(θ̃ : U) = DKL
(
g̃(X,Y) || EU [P (Y | X)G(X,Y)]

)
(4.5)

Here, g̃(X,Y) expresses an expectation for X∪Y, either in the form of a particular value
or as a marginal distribution [MM10]. The result of DKL describes the divergence
between the expectation of a given constraint g̃(X,Y) and the expectation over the
sets of assignments {X,Y} in U with respect to the modeled CPD P (Y | X). Further,
Mann and McCallum [MM10] use the term label regularization for the case when
using a number of constraint functions

G(X, Yn) = 1(Yn) (4.6)

and a number of constraints
g̃(X,Yn) = P̃ (Yn) (4.7)

in the GE term of Equation (4.5). Here, P̃ (Yn) is an estimated marginal distribution
over a target variable Yn ∈ Y which is given as an input to the learner. We will define
a similar regularization approach for our author extraction task in Section 5.3.

There are a number of ways in which GE constraints can be applied to an objective
function. In the context of semi-supervised learning, Mann and McCallum [MM10]
discuss the addition of GE criterion G(θ̃ : U) to a likelihood function L(θ̃ : D):

O(θ̃ : D,U) = L(θ̃ : D) +G(θ̃ : U). (4.8)

This way, both, a labeled data set D and an unlabeled data set U , can be utilized
during the learning of θ̃.

It is also possible to build an objective function by only using an unlabeled data
set U . For this, we use the GE criterion, combined with a Gaussian prior (see Equa-
tion (3.29)) to prevent an overfitting of the model:

O(θ̃ : U) = G(θ̃ : U) +Gauss(θ̃). (4.9)

Such an approach was first discussed in Mann and McCallum [MM08].
Seen from a different perspective, using GE as an objective function allows us to

express expectations on a subset of elements from an unlabeled data set while other
elements remain unconstrained [MM10]. This is precisely what is needed in order to
apply distant supervision to the learning of CRFs. The idea is to generate marginal
distributions P̃ (Y) (see Equation (4.7)) for the Y for which we have information
from an external source.

It is important to mention that GE criteria a not convex functions [MM10]. Thereby,
when using a GE criterion as the objective function for learning a CRF model, a local
maximum does not have to be a global maximum.

In the following chapter, we will use this idea for the extraction of authors from
the reference section of research papers using a distantly supervised training set.

31

5. Author Extraction

In this chapter, we will discuss author extraction as a concrete use case for the usage
of CRFs in combination with distant supervision. This can be broken down into to
following steps:

1. Preprocessing of research papers to extract reference sections as text from PDF
documents

2. Generating tagged training sets for distant supervision

3. Building GE constraints

4. Learning a CRF model using GE constraints

The following sections will describe these steps in more detail. In addition, we will
formulate a number of research questions that we aim to answer in Chapter 7. These
research questions will focus on the use case of extracting authors from research
papers in the area of German social sciences. We will also highlight some of the
similarities and differences of our approach to the one of Lu et al. [Lu+13].

5.1. Preprocessing

Before building a training set using distant supervision, an unlabeled training data
set needs to be generated.

Since we want to learn a model that is able to extract author names in reference
sections, it is crucial to remove the text that is not part of the reference section.
Otherwise, we would also match names that appear in the body of the research paper
during the author name matching step (see Section 5.2.2). In order to incorporate the
layout of the research paper, this step of detecting reference sections ideally should
be performed before converting the PDF document into a textual format. This would
for example allow an accurate detection of headers or page numbers.

Either before or after detecting reference sections, the textual content of the research
paper has to be extracted. For this, the layout of the document needs to be recognized
in order to correctly extract the text from a research paper. For example, research
papers can contain two columns of text per page. Without considering the layout, it
is possible that the two columns are merged during the text extraction.

33

5.2. Generating Training Sets with Distant Supervision

As discussed in Chapter 4, we refer to distant supervision as the labeling of a data
set using an external knowledge base with the goal of generating a training data
set. In this section, we discuss our approach of building such a distantly supervised
training set for the task of author extraction.

5.2.1. Knowledge Base Creation

In order to apply distant supervision to the task of labeling author names, an external
source for author names is needed. Since the goal is to distinguish between the first
names and last names of an author, external sources that provide this distinction are
preferable. This is because determining which part of a name belongs to the first
names and which to the last names is not always a trivial task. For example, German
last names can be identical to common first names such as “Friedrich”, “Otto”, or
“Albrecht”.

In addition to the labeling of reference sections during the distant supervision,
such a knowledge base can also be used to construct features for the CRF model (see
Section 5.4.3).

A question that arises is whether the origin of the author list is of importance. We
formulate this as the following research question:

RQ1: Does using an author list that is related to this area improve the
performance of the resulting distantly supervised linear-chain CRF model
for the author extraction task in comparison to an unrelated author list?

5.2.2. Author Name Matching

Given a data set of unlabeled reference sections and a knowledge base for author
names, generating a distantly supervised training set requires the labeling of author
names in the references. A number of challenges arise from this task.

First, author names can appear in a reference in a variety of ways. As an exam-
ple, we show eleven possible variations of the name “Max Friedrich Schmidt” in
Figure 5.1. We thereby have to consider such variations when matching a given
reference string to our author name knowledge base.

Another aspect that requires attention is a possible overlap of matches. Figure 5.2
shows six possible author names that can be extracted from the fourth reference
string in Figure 3.1. As we can see, possible author names can overlap. In our
example, the word “Friedrich” can be part of four different author names. Facing a
similar problem when having multiple possible DBpedia1 entity types for a given
text segment, Lu et al. [Lu+13] randomly select one of the DBpedia entity types as
the label for this text segment. Instead of deciding for one of the overlapping author

1http://wiki.dbpedia.org/ (accessed Aug. 6, 2016)

34

http://wiki.dbpedia.org/

• Schmidt, Max Friedrich • Max Friedrich Schmidt
• Schmidt, Max F. • Max F. Schmidt
• Schmidt, M. F. • M. F. Schmidt
• Schmidt, M.F. • M.F. Schmidt
• Schmidt, MF • MF Schmidt
• Schmidt MF

Figure 5.1.: Possible ways, the name “Max Friedrich Schmidt” can appear in a refer-
ence string. Here, “Friedrich” is seen as a first name. We omit punctua-
tion marks that separate different authors.

• Mia Wagner, • Wagner, Max
• Wagner, Max Friedrich • Max Friedrich
• Max Friedrich Schmidt • Friedrich Schmidt

Figure 5.2.: Possible author names that can be extracted from the fourth reference
string in Figure 3.1. In this case, “Friedrich” can be both part of a first
name or a last name. Also, we include punctuation marks that separate
different authors.

names, our goal is to consider all possible author names. In Section 6.2.2, we will
discuss a data structure that can represent overlapping author names.

5.3. Building GE Constraints

After labeling the occurrences of authors in our reference sections, we now want to
derive GE constraints that will be used for learning a CRF model.

A first step is to specify the possible labels Val(Yn) for a target variable Yn. One
goal in the scenario is to recognize the first names and last names of authors as such.
For this we use the labels FN and LN, respectively. Every other word is marked with
the label O for other. We thereby do not further distinguish between first names
and middle names. Analyzing the impact of an additional middle name on the
performance could be part of a future work. Since our second goal is to group first
names and last names together to form author names, it is important to additionally
encode the beginning and end of an author name in the given word sequence. A
common approach is to extend the label by this information [e.g. RM95; HM12].
Given the labels FN, LN, and O we add the following prefixes:

• B- marks the beginning word of an author name.

• I- marks an intermediate word in an author name.

• E- marks the ending word in an author name (optional).

35

Words: Mia Wagner, Max Friedrich Schmidt (2010): Fourth . . .

BIEO: B-FN E-LN B-FN I-FN E-LN O O . . .
BIO: B-FN I-LN B-FN I-FN I-LN O O . . .

Table 5.1.: Tagging example for the fourth reference string in Figure 3.1 using the
BIEO and BIO format.

This results in labels such as B-LN which marks a word as last name and the begin-
ning of an author name. We refer to this labeling format as the Beginning-Intermediate-
End-Other (BIEO) format since a label either has one of the three mentioned prefixes
or is the O label. In Table 5.1, we demonstrate our BIEO format using the fourth
reference string in Figure 3.1 as an example.

Instead of marking the ending word of an author name using the E- prefix, it
can also be marked as such using the I- prefix. This is possible because the word
following this ending word is either the beginning of the next author name (labeled
with B-FN or B-LN) or a non-author word (labeled with O). When leaving out the E-
prefix, labels either have one of the two prefixes B- or I-, or consist of the O label.
Thereby, Houngbo and Mercer [HM12] refer to this as the Beginning-Intermediate-Other
(BIO) format.

In Table 5.1, we also apply the BIO tagging format to the fourth reference string in
Figure 3.1.

Having defined the BIEO and BIO format, the following research question arises:

RQ2: Does a labeling using the BIEO format improve the performance of
the resulting distantly supervised linear-chain CRF model for the author
extraction task in comparison to the BIO format?

Lu et al. [Lu+13] use the BIO format to group text sequences that belong to the same
DBpedia entity types and in the following illustrations, we will also consider the BIO
format for simplicity reasons. Yet, the discussed approaches can also be applied to
the BIEO format.

Given an unlabeled set U = {u(1), . . . , u(M)} of M reference strings, we want to
generate GE constraints for the CRF model learning. For this, we assume that a
number of subsequences in the reference strings are matched against a data base of
author names (see Section 5.2). Assuming the BIO format, a target variable Yn can
have the following possible assignments:

Val(Yn) = {B-FN,B-LN,I-FN,I-LN,O}.

Our goal is to build constraints that follow the label regularization approach proposed
by Mann and McCallum [MM10] (see Equation (4.7)). Thereby, for every Yn, we build
a probability distribution P̃ (Yn) which assigns a probability to each label in Val(Yn).

36

To do so, we iterate over the reference strings in U . For every word wn in u(m) we
distinguish two cases:

1. wn is tagged as part of at least one author.

2. wn is not tagged as part of at least one author.

In the first case, the tagging contributes a probability mass of 1 to the according
labeling of this word. To illustrate this, given the fourth reference string in Figure 3.1,
we assume that the subsequences “Mia Wagner,” and “Wagner, Max” were matched
against an author database. Thereby, we assign the probability mass 1 to the label
B-FN for the word “Mia” and to the label I-FN for the word “Max”. For the word
“Wagner”, we assign the probability mass 0.5 to each of the labels I-LN and B-LN.

For the second case, the assignment of the probability mass is less clear. One
approach is to add a probability mass of 1 to the O label for the given word. A second
approach is to distribute the probability mass 1 over the labels in Val(Yn). Such a
distribution can either be predefined or it can be estimated from the set of matched
author names.

These two approaches for assigning a probability mass to an unmatched wn result
in the following research question:

RQ3: How does, for a word wn that has no matched author names, modi-
fying the probability mass distribution over the labels in Val(Yn) impact
the performance of a distantly supervised linear-chain CRF model?

After iterating over all u(M) in U , we build the constraints P̃ (Yn) by normalizing
the aggregated probability masses for every word wn.

To illustrate the generation of constraints, we assume the following probability
masses for the word “Friedrich”:

{B-FN=0,B-LN=0,I-FN=2,I-LN=1,O=1}.

The corresponding probability distribution of the constraint P̃ (Yn) is calculated with:

P̃ (Yn=B-FN) = 0/4 = 0

P̃ (Yn=B-LN) = 0/4 = 0

P̃ (Yn=I-FN) = 2/4 = 0.5

P̃ (Yn=I-LN) = 1/4 = 0.25

P̃ (Yn=O) = 1/4 = 0.25.

In the case of author extraction, the number of words wn in U which are matched
to at least one author name is considerably smaller than the number of wn which do
not have a matching author. One reason is that author names only form a relatively

37

small part of a reference string. Another reason is that in practice not all author
names can be matched against a given knowledge base. Because of this imbalance, it
could be helpful to not consider every unmatched word wn for the construction of
GE constraints. From this we derive the following research question:

RQ4: How does changing the percentage of unmatched words that are
used in the training set for building GE constraints impact the perfor-
mance of the resulting distantly supervised linear-chain CRF model?

For our author extraction example, Table A.8 shows the GE constraints for the
matches of author names in Table A.7 with the four reference strings in Figure 3.1.
Here, we additionally consider every third unmatched word for the constraint calcu-
lation.

Other approaches to author extraction often do not have a fine-grained distinction
between first and last names or regarding the borders between different author names.
When the author extraction is part of a more general reference string extraction, it is
only decided whether a given word in a reference string is part of an author name or
not [e.g. CR99; CGK08; Wu+14; BM07].

Yet, we can also make this decision based on the results from our approach: If we
assign on the labels B-FN, B-LN,I-FN, or I-LN to a word, we classify it as part of an
author name. Words that have assigned the O label, are classified as not being part of
an author name.

From this, we derive the following research question:

RQ5: How does a distantly supervised linear-chain CRF model that
recognizes first and last names as well as boundaries between authors
perform on the task of labeling a word as being part of an author name,
when compared to a model that is constructed for this labeling task?

Since our approach does not rely on manually labeled training data, it is feasible to
construct relatively large training sets. This leads to a another research question:

RQ6: Does increasing the number of used reference sections for the
training of a distantly supervised linear-chain CRF model improve the
performance for the author extraction task?

5.4. Learning CRFs

After generating a number of GE constraints, we now focus on the CRF model
learning. One important aspect is the graphical structure K̃ which, as stated in
Section 3.4, is given as an input to the model learning. Another important aspect for
the model performance is the selection of suitable textual features.

38

start LN1 LN2 LN3

EC1 EC2 EC3

Ψ(start, LN1, LN2) Ψ(LN1, LN2, LN3)

Ψ(LN1, EC1) Ψ(LN2, EC2) Ψ(LN3, EC3)

Figure 5.3.: Factor graph of a linear-chain CRF with Markov order 2, derived from
the author extraction example in Chapter 3.

5.4.1. Graph Construction

The underlying graph K̃ of a CRF model M̃ has a strong impact on both the runtime
performance and the quality of the model. As we discussed in Section 3.4, an efficient
inferencing is crucial for the learning of CRF. The forward-backward algorithm
allows an efficient inferencing but requires K̃ to follow a certain sequential structure.

For the use case of entity recognition, linear-chain CRFs are a popular choice [e.g.
PM04; MM08; LW12; GGH12; Lu+13; Oht+14]. They can be modeled to follow differ-
ent Markov orders. The concept of Markov orders builds on the Markov assumption
proposed by Markov [Mar60]. A linear-chain CRFs with Markov order k models
dependencies between a target variable Yn and its k preceding target variables.

The linear-chain CRF in Figure 3.4 thereby has a Markov order of 1. Figure 5.3
shows an example linear-chain CRF with Markov order 2.

From this, we derive the following research question:

RQ7: How does changing the Markov order of the distantly supervised
linear-chain CRF impact the performance of the learned model?

5.4.2. Model Parameters

We discussed another variable of our distantly supervised linear-chain CRF in Sec-
tion 3.4. The regularization parameter of the Gaussian prior can be used to adjust
its penalty on the usage of too many parameters. This results in another research
question:

RQ8: How does changing the regularization parameter of the Gaussian
prior impact the performance of the distantly supervised linear-chain
CRF model?

39

Feature
Type Name Description

Local CAPITALIZED The first character is capitalized.
PERIOD Contains exactly one period.
PERIODS Contains more than one period.
CONTAINSPERIOD Contains a period (not at beginning or end).
ENDSWITHPERIOD Ends with a period.
CONTAINSCOMMA Contains a comma (not at beginning or end).
ENDSWITHCOMMA Ends with a comma.
CONTAINSDASH Contains a dash (not at beginning or end).
ENDSWITHDASH Ends with a dash.
NUMBER Contains exactly one number.
NUMBERS Contains at least two separate numbers.
ONELETTER Consists of one letter.
BRACES Contains opening and closing braces.
BRACKETS Contains opening and closing braces.
MONTH Matches a month word (e.g. Jan. or January).
YEAR Matches a year between 1699 and 2016.

Lexicon FIRSTNAME Appears in a first name dictionary.
LASTNAME Appears in a last name dictionary.

Table 5.2.: Description of the features that we use for our evaluation in Chapter 7.

5.4.3. Feature Engineering

Based on the graphical structure of a linear-chain CRF with its given set of target
variables Y, we now consider the construction of the set of observed variables X.
These observed variables provide information about certain textual features of the
given word sequence. As discussed in Section 3.2, a key strength of CRFs is that
observed variables in X can be highly dependent on each other without impacting
the model performance.

Since there is a large body of research that focuses on the extraction of reference
string information using CRFs, there are a number of features that were suggested
for this task. Table A.9 summarized a survey of the used features in related research.
Following the separation of Peng and McCallum [PM04], we distinguish between
three features: Local features, layout features, and external lexicon features. A short
description of the individual features is given in Table A.10. Note that Wu et al.
[Wu+14] use an identical list of feature to Councill, Giles, and Kan [CGK08].

In Table 5.2, we list the features that we use during our evaluations in Chapter 7.
The selection of features is based both on the feature survey in Table A.9 as well as
empirical findings during our evaluation. Currently, we do not use layout features
such as the position of the word in the text line. Instead, we concatenate lines by

40

removing line breaks to allow a matching of author names that are separated into
two lines. More details, for example on the used name dictionaries, are given in
Section 6.4.3.

In addition, we apply feature conjunctions [McC02]. They allow the learner to assign
features to a word based on the features of its neighboring words. Yet, the learner has
the freedom to not include such features. In our learning approach and for position
n, we add feature conjunctions for position n− 1 and n+ 1.

41

6. Implementation

In this chapter, we discuss our author extraction implementation. We will first look
into the preprocessing steps. We then consider the generation of distantly supervised
training sets which includes creating an author knowledge base and the author name
matching. Using the reference strings with matched author names, we then build
GE constraints. The last section of this chapter describes the learning of linear-chain
CRFs using the reference strings as an unlabeled training set in combination with the
generated GE constraints.

The source code of the discussed implementation is available online1 under a GNU
General Public License (GPLv3).

6.1. Research Paper Preprocessing

The corpus that was used for our study consists of all research papers2 that are
accessible as PDF files via the Social Science Open Access Repository (SSOAR)3.

Since our later steps require textual input, the first step is to extract the content
from the PDFs files. Apache PDFBox4, a Java library for manipulating PDFs files,
allows the extraction of the content as Unicode text. This is done by also taking into
account the formatting of the document, for example when a research paper contains
two text columns per page. This way, we were able to extract the text of 31,795
research papers while 675 PDF files could not be processed by Apache PDFBox

After extracting the text from the PDFs, the next step is to identify and extract
reference sections. As discussed in Section 5.1, this is necessary to prevent the author
matching algorithm from matching author names in the body of the research paper.

The reference string parsing package ParsCit5 uses regular expressions to iden-
tify the heading of a reference section by matching against strings such as “Ref-
erences”, “Bibliography”, or “References and Notes” [CGK08]. Further heuristics
detect whether a found reference section heading was found too early, i.e., in the first
40% of the text [CGK08]. After the start is identified, another regular expression is
used to search for the end of the reference section.

Yet, the implementation in ParsCit only considers research papers in the English
language. Thereby, German headers for reference sections such as “Referenzen” or

1http://mkrnr.de/author-extraction (accessed Aug. 6, 2016)
232,470 papers were downloaded on March 6, 2016.
3http://www.ssoar.info (accessed Aug. 6, 2016)
4https://pdfbox.apache.org/ (accessed Aug. 6, 2016)
5http://wing.comp.nus.edu.sg/parsCit/ (accessed Aug. 6, 2016)

43

http://mkrnr.de/author-extraction
http://www.ssoar.info
https://pdfbox.apache.org/
http://wing.comp.nus.edu.sg/parsCit/

“Literaturverzeichnis” are not matched by the regular expressions. Even after adding
a variety of German section headers to the ParsCit implementation, a thourough
manual inspections suggested a poor performance. We thereby implemented our
own approach which uses similar regular expressions and heuristics as the one
of ParsCit. Using this implementation, we were able to extract reference sections
from 16,513 research papers. Yet, further investigations are necessary to identify the
reasons for the bad performance of ParsCit when applied on our data set.

Before using the extracted reference sections as an input for the author matching,
we performed one further preprocessing step. The reason for this is a reference style
in which author names are separated by a slash instead of a space. An example for
this is the following reference string:

Andretta, G./Baethge, M./Dittmer, S. 1994: Übergang wohin? Schwierigkeiten
ostdeutscher Industriearbeiter bei ihrer betrieblichen Neuorientierung.
In: SOFI-Mitteilungen Nr. 21/März 1994, Göttingen.

Since we use whitespaces to separate words, without preprocessing, we would
obtain words such as “G./Beathge,” or “M./Dittmer,”. To prevent this, we add
spaces around slashes. For our example, this gives us:

Andretta, G. / Baethge, M. / Dittmer, S. 1994: Übergang wohin? Schwierigkeiten
ostdeutscher Industriearbeiter bei ihrer betrieblichen Neuorientierung.
In: SOFI-Mitteilungen Nr. 21 / März 1994, Göttingen.

6.2. Generating Training Sets using Distant Supervision

We divide the training set generation into two steps. First, a suitable knowledge base
needs to be created. In our case, such a knowledge base needs to contain author
names with separated first and last names. The second step is a matching of author
names in the author list with their occurrences in the unlabeled reference sections.
For this, we also need to consider different formats in which an author name can
appear in a reference string.

6.2.1. Knowledge Base Creation

RQ1 aims to compare the impact of different author sets on the performance of the
resulting model. For this, we consider two different sources of author names. Both
have in common that author names are separated into first names and last names.

The first source is the Gemeinsame Normdatei (GND)6—German for integrated au-
thority file—which is published by the German National Library in cooperation
with other library networks and institutions. The GND contains information on

6http://www.dnb.de/EN/Standardisierung/GND/gnd.html (accessed Aug. 6, 2016)

44

http://www.dnb.de/EN/Standardisierung/GND/gnd.html

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gndo: <http://d-nb.info/standards/elementset/gnd#>
SELECT ?forename ?surname WHERE {
?person rdf:type gndo:DifferentiatedPerson .
?person gndo:preferredNameEntityForThePerson ?nameEntity .
?nameEntity gndo:forename ?forename .
?nameEntity gndo:surname ?surname .

}

Figure 6.1.: SPARQL query for extracting the preferred name of differentiated per-
sons from the GND file given in a RDF format.

persons, corporate bodies, conferences, and other topics with a focus on the German-
speaking countries which includes Germany, Austria, and Switzerland. Further,
it distinguishes between differentiated and undifferentiated persons [Hoc13]. A
differentiated person is connected to exactly one individual whereas for an undif-
ferentiated person, no such connection is modeled. This for example is the case for
historical personalities for which no precise records on their identity exist.

The GND data set is available under a Creative Commons Zero (CC0) license
and can be downloaded in the following formats: Marc 21, MARCXML, RDF/XML,
Turtle, and JSON-LD.

For our author extraction, we use the Turtle format which is a compact format for
Resource Description Framework (RDF) data. To extract the author names, we used
the Apache Jena7 framework. After loading the Turtle file into an RDF triple store,
we extracted the author names using a SPARQL Protocol and RDF Query Language
(SPARQL) query. The used SPARQL query for extracting differentiated persons is
shown in Figure 6.1. The GND file also contains name variations for some persons.
Yet, for our evaluation we only consider the name that is marked as preferred
name. Further evaluations could investigate whether including name variations
provides a better performance or introduces more false-positive matches.

Due to the distinction between differentiated and undifferentiated names, we cre-
ated two separate lists of names. One that only contains the names of differentiated
persons and another one that contains the names of both differentiated and undiffer-
entiated persons. We refer to the data sets as gnd-diff and gnd-full, respectively.
General statistics on the number of extracted names are shown in Table 6.1. The table
also contains statistics on the number of individual names.

The second source is the social science portal Sowiport8 which is maintained by
GESIS — Leibniz Institute for the Social Sciences. From this portal, GESIS provided a

7https://jena.apache.org/ (accessed Aug. 6, 2016)
8http://sowiport.gesis.org/ (accessed Aug. 6, 2016)

45

https://jena.apache.org/
http://sowiport.gesis.org/

gnd-full gnd-diff swp-trim swp-full
swp-full

+gnd-full

Extracted
Names

8,436,468 3,684,265 3,684,265 10,796,240 19,232,708

Individual
Names

6,853,487 3,239,116 1,617,698 3,135,891 9,081,885

Table 6.1.: Statistics for different variations of the gnd (GND) and swp (Sowiport)
name lists.

list of author names that was extracted via an Apache Solr9 query on June 13, 2016.
The results were stored in an Extensible Markup Language (XML) file.

In this file, an author name is represented as a string in which the last names are
separated from the first names with a comma. In some cases, multiple author names
appear together in one string, separated by semicolons.

The Sowiport portal was chosen because of its topical similarity to the research
papers from the SSOAR. We will refer to the second data set as the swp data set. In
order to allow a comparison with the GND data set, we additionally generated a
version of the swp data set containing the same number of authors as the GND data
set. We refer to this as the swp-trim data set.

Table 6.1 contains statistics on the different variations of the gnd and swp data sets
as well as a combined data set of gnd-full and swp-full.

6.2.2. Author Name Matching

A common practice is to annotated matches using markup languages such as XML [e.g.
McC+00; CGK08]. For example, the third reference string in Figure 3.1 could be an-
notated with:

<a1><fn>Max</fn> <ln>Müller,</ln></a1> Fritz Schmidt (2010): . . .

Here, <a1>...</a1>marks up the first author name in the sequence, <fn>...</fn>
a first name, and <ln>...</ln> a last name. Since such a markup language uses a
tree-based model, they do not allow a direct encoding of overlaps. For example, as-
suming that we want to match all occurrences of the authors “Max Müller” and “Fritz
Müller”, the first three words of the previous example would need to be annotated
with:

<a1><fn>Max</fn> <a2><ln>Müller,</ln></a1> <fn>Fritz</fn></a2>

Yet, such a nesting of the <a1> and <a2> tags is not allowed in XML. There are a
number of approaches that try to overcome this limitation of tree based markup

9http://lucene.apache.org/solr/ (accessed Aug. 6, 2016)

46

http://lucene.apache.org/solr/

languages. Examples are milestone elements, fragmentation, and standoff markup [SH00].
They all drastically increase the complexity of the markup document and require
specialized parsers in order to retrieve data from the documents.

To avoid this overhead, it would be preferable to annotate our author matches using
a data structure that supports overlapping hierarchies by default. Sperberg-McQueen
and Huitfeldt [SH00] propose such a data structure named general ordered-descendant
directed acyclic graph (GODDAG). Being a directed graph, it naturally solves the
issue of overlaps by allowing a node to have multiple parents. The graph has a
hierarchy since it it acyclic. In addition, it has ordered descendants. Thereby, for any
given node, the order of its child nodes is defined. As a part of this thesis, a Java
library for the GODDAG data structure was implemented that allows the generation,
serialization, and visualization of GODDAGs. It is available online10 under a GNU
General Public License.

Using the GODDAG data structure, we will now discuss a concrete way of tagging
author names in a given reference string.

As a first step, several variations of an author list described in Section 6.2.1 are
generated. For this, the author names are split into a set of first names and a set of
last names. If an author has multiple first names or last names, they are not further
separated in this case. Thereby, we refer to them as full first names set and full last
names set. Since first names can be abbreviated in a reference, a next step is to generate
a first name variations set. For example, given the full first name “Max Friedrich”, we
add the following variations to the first name variations set:

• Max

• Friedrich

• M.F

• MF

• M

• F

Note that no variation ends with a period. This is because we will later ignore leading
and trailing punctuation marks when matching names.

Further, we split entries in the full last names set that contain multiple last names,
resulting in the single last names set.

We now generate an initial GODDAG structure for our given text. This structure
consists of a root node which contains the words of the reference section has as child
nodes. Words are separated at white space or newline characters. These words are
the leaf nodes of the GODDAG. The leaf nodes contain two representations of the
word. One that contains the word as it appears in the reference string, including its

10http://mkrnr.de/goddag (accessed Aug. 6, 2016)

47

http://mkrnr.de/goddag

Mia Wagner, Max Friedrich Schmidt . . . Springer.

FN LN FN LN FN LN O

root

Figure 6.2.: GODDAG for the fourth reference string in Figure 3.1 with matched first
names and last names from Table A.7.

leading and trailing non-word characters. The other only contains the word itself
without leading and trailing non-word characters. This allows an efficient name
lookup in the following steps.

Given this initial GODDAG structure, we now match the entries in the first name
variations set against the “word” properties of the leaf nodes. If a match is found, a
non-terminal node labeled “FN” is added between the root node and the matched
leaf node. In a second pass, we match against the single last names set and add non-
terminal nodes labeled “LN” accordingly. We refer to the added nodes as first name
nodes and last name nodes, respectively.

After the two iterations, a leaf node can simultaneously have a first name node
and a last name node as its parent. This again is not allowed in a tree-based structure
such as XML.

Figure 6.2 shows a GODDAG for the fourth reference string in Figure 3.1 with
matched first names and last names. Here, the word “Friedrich” is tagged as both a
possible first name and last name. Note that in our evaluation, we use one GODDAG
per reference section.

The goal now is to match the list of authors against the GODDAG structure with
identified first and last names. For this, we generate an author name map that contains
the entries from the full last names set as keys. As values, it contains the first name
variations of first names that appear together with the given last names in our original
author list.

Using this map, we iterate over the leaf nodes using a sliding window approach.
First, we examine if one or more neighboring leaf nodes have a last name parent
node. If this is the case, we examine their neighboring leaf nodes for first name parent
nodes. If both last name parent nodes and neighboring first name parent nodes are
found, a lookup in the author name map is performed using the word property of
the leaf nodes.

If a match is found, a non-terminal node with the label “AU” for author is inserted
between the root node and the corresponding parents of the matched leaf nodes.

Figure 6.3 shows a GODDAG for the fourth reference string in Figure 3.1 that

48

Mia Wagner, Max Friedrich Schmidt . . . Springer.

FN LN FN LN FN LN O

AU AU AU

root

Figure 6.3.: Final GODDAG for the fourth reference string in Figure 3.1.

includes three matches from the author list in Table A.7. In Appendix A.6.1, we
present the GODDAGs for the three remaining reference strings of Figure 3.1.

6.3. Building GE Constraints

We now use the created GODDAG structures with matched author names to create
GE constraints. To recall from Section 5.3, a GE constraint is a probability distribution
P̃ (Yn) for a word wn in the reference section where Val(Yn) is the set of possible labels
for this word:

Val(Yn) = {B-FN,B-LN,I-FN,I-LN,O}
We can derive this probability distribution from the GODDAGs by iterating over the
children of the root node. When reaching an author node, we can add the according
probability mass to the probability distributions of of its children.

For example, the first author node in Figure 6.3 contains a first name node and a
last name node. Since the children are ordered, the first name node appears first in
the sequence. Thereby, we add a probability mass of 1 to the label B-FN of the word
“Mia” and to the label I-LN of the word “Wagner,”. This shows the importance of
having ordered children in this graph structure.

Table A.8 shows the resulting GE constraints for the four GODDAGs that were
derived from the matched of the author list in Table A.7 using the reference strings in
Figure 3.1. As we discussed in Section 5.3, for this example we also include every
third word that is not matched to an author name. The first included word is “(2010):”
in the first reference string.

6.4. Learning CRFs

After presenting our approach of generating GE constraints, we now discuss the
implementation of the learning of linear-chain CRFs which uses an unlabeled set of

49

start LN1 LN2

EC1 EC2

Ψ(start, LN1) Ψ(LN1, LN2)

Ψ(LN1, EC1) Ψ(LN2, EC2)

Ψ(LN1) Ψ(LN2)

Figure 6.4.: Factor graph of a linear-chain CRF with both Markov order 0 and 1,
derived from the author extraction example in Chapter 3.

reference sections and the corresponding GE constraints as an input.
We use the MAchine Learning for LanguagE Toolkit (MALLET) [McC02] for most of

the implementation discussed in this section. MALLET is an open-source Java library
that includes tools for tasks such as document classification, sequence tagging, or
topic modeling. Especially relevant for us is its implementation of linear-chain CRFs
since it can be learned using a list of GE constraints. The learning is performed using
gradient ascent with a limited memory BFGS approximation (see Section 3.4).

6.4.1. Graph Construction

Based on the discussion in Section 5.4.1, we focus on the construction of linear-chain
CRFs.

In MALLET, it is possible to create linear-chain CRFs with different Markov orders
(see Section 5.4.1). More specifically, the Markov order is declared using an integer
array with non-negative numbers in increasing order. The highest integer specifies
the Markov order of the CRF. The other numbers represent weight sets that represent
lower Markov orders in the same model.

For example, an integer array [0,1] specifies a Markov order 1 linear-chain CRF
and an additional weight set for the Markov order 0 states. When modeled with
factors, the Markov order 0 state for a word wn only includes the target variable Yn:
Ψ(Yn). Applied to the author extraction example from Chapter 3, this specification
results in the factor graph shown in Figure 6.4.

6.4.2. Model Parameters

The implementation of linear-chain CRFs in MALLET allows the modification of
several model parameters. One that is addressed by RQ8 is the regularization
parameter of the Gaussian prior (see Section 3.4). The default for this parameter is set
to 10. In Chapter 7, we will show that small modifications do not have a significant
impact on the performance of the resulting model.

50

Further, we can specify the maximum number of iterations during the learning
with gradient ascent. In our evaluation setup, we set this number to 10, 000 since the
learning always converged in a reasonable time. Statistics on the learning runtime
are shown in Appendix B.5.

6.4.3. Feature Engineering

To include features in MALLET, they are added via pipes. A pipe performs an indi-
vidual manipulation of a stream of input data and provides an stream of processed
output data. A first step is to transform a given input string into a vector of tokens. In
our case, the input string is a reference section and a token containing a word in the
reference string, separated by whitespaces.

It is now possible to assign different features to the tokens. The local features that
we use for the evaluation (see Table B.2), are implemented using a variation of the
RegexMatches class. This class matches words against a regular expression that
describes a feature. If a match was found, it assigns a feature label with an initial
weight of 1.

Further, we consider two lexicon features, FIRSTNAME and LASTNAME. We use
the two of the lists that we created for the author name matching in Section 6.2.2
as lexica. Tokens are assigned the feature label FIRSTNAME if the contained word
appears in the first name variations set. Consequently, the feature label LASTNAME is
assigned if the word appears in the single last name set. In our evaluation, the feature
weight is set to the natural logarithm of the frequency of the word in the original
author name knowledge base. This is done to reduce the impact of the feature for
words that appear with a very high frequency. For example, in the swp data set, the
first name “Max” was part of 11,618 author names. Thereby, we assign the feature
weight ln(11, 618) ≈ 9.3603 to a token that contains the first name “Max”. Further
evaluations should investigate the selection of this feature weight.

51

7. Evaluation

In this chapter, we will discuss our evaluation with the goal of answering the research
questions in Chapter 5.

Three typical metrics for assessing the performance of a sequence tagging task
are precision, recall, and the F1 score [CGK08]. Given a sequence of words where
each word is assigned a label out of a set of labels L, precision and recall are defined
as [GG05]:

precision(L) =
TP (L)

TP (L) + FP (L)
recall(L) =

TP (L)

TP (L) + FN(L)

Here, TP (L), FP (L), and FN(L) stand for the number of True Positive, False Posi-
tive, and False Negative assignments of labels in L, respectively. Positive refers to
the number words that are labeled with L in the given tagged sequence and True
refers to the number of words that are labeled with L in a correctly tagged sequence.
Negative and False are defined accordingly.

To combine the two metrics into one, the F1 score is defined as the harmonic mean
of precision and recall [Bil+03]:

F1(L) =
2 · precision(L) · recall(L)
precision(L) + recall(L)

.

Further, we have the metric of accuracy which is defined as [Pow11]:

accuracy(L) =
TP (L) + TN(L)

TP (L) + FP (L) + TN(L) + FN(L)
.

In Appendix B.1, we show that the accuracy value of L in our scenario always
corresponds to the F1 score calculated over all labels in Val. We will thereby not show
the accuracy in our results.

To evaluate our models, a testing set of tagged reference strings was manually
created. For this, we randomly selected 250 PDFs out of the 32,470 research papers
from SSOAR. We were able to extract the text from 244 PDFs. From this, we selected
the 54 research papers that satisfy the following requirements:

• It is written in German.

• It contains a reference section.

• its text does not show signs of errors from the PDF extraction step.

53

BIO Format

Label Count

B-FN 551
B-LN 2,697

I-FN 3,197
I-LN 609
I-O 1
O 33,459

Author Labels 7,055
All Labels 40,514

BIEO Format

Label Count

B-FN 551
B-LN 2,697
E-FN 2,655
E-LN 560
I-FN 542
I-LN 49
I-O 1
O 33,459

Author Labels 7,055
All Labels 40,514

Table 7.1.: Statistics on the manually tagged data set for labels following the BIO and
BIEO format. “Author Labels” are “All Labels” minus the O labels.

We then manually tagged all authors in the reference section, while also distin-
guishing between their first names and last names. Statistics of the resulting labels for
the BIO and BIEO formats are shown in Table 7.1. Note that our testing set contains
exactly one word that has the label I-O for Intermediate Other. This label is assigned
to the misplaced comma in “Wolff , S.”, which is part a reference string in Mörth and
Fröhlich [MF98]. Due to its relative insignificance, we do not consider this label in
our learned model. Consequently, we exclude the manually tagged reference sections
from the training set.

Due to the size of the training set, we only consider a randomly selected subset of
reference sections for most of the evaluations. Further, when comparing training sets
of different sizes, we do not ensure that the smaller training sets are a subset of the
larger training sets. Instead, every training subset is randomly extracted from the
complete training set.

We now present our evaluations that address the individual research questions
from Chapter 5. Since we do not mention all parameters of our evaluation setup in
the text, we refer to Appendix B.2 for a detailed overview on the configuration.

RQ1 considers the impact of using a related list of author names as the knowledge
base in comparison to an unrelated list. As discussed in Section 6.2.1, we have two
different sources of author names. The gnd-full data set contains persons in the
German speaking area but has no further restrictions on the research area. The
swp-full data set, on the other hand, contains author names that are related to the
research area of our unlabeled set of reference sections. To compare the two data
sources, we additionally created the swp-trim data set. It contains the same total
number of authors as the gnd-full data set (see Table 6.1). Further, we combine
both the gnd-full and swp-full data set to see if we result in a better performance

54

Reference
Sections

gnd-full gnd-diff swp-trim swp-full
gnd-full

+swp-full

500 0.8508 0.8128 0.8939 0.8778 0.8652
1,000 0.8272 0.8303 0.8607 0.856 0.8646
1,500 0.8607 0.8399 0.8833 0.8823 0.8453
2,000 0.867 0.8698 0.8731 0.8823 0.8713
2,500 0.838 0.8562 0.8856 0.8868 0.8431

Table 7.2.: F1 scores of author labels for different author data sets and number of
reference sections. The best F1 score in each row is highlighted.

Reference
Sections

gnd-full gnd-diff swp-trim swp-full
gnd-full

+swp-full

500 0.9572 0.9513 0.9687 0.9646 0.9617
1,000 0.9542 0.9537 0.9618 0.9608 0.9612
1,500 0.9598 0.9551 0.965 0.9649 0.9565
2,000 0.9611 0.962 0.9622 0.9655 0.9624
2,500 0.9543 0.9592 0.9664 0.9655 0.957

Table 7.3.: F1 scores of all labels for different author data sets and number of reference
sections. The best F1 score in each row is highlighted.

than when using the data sets separately. In Table 7.2 and Table 7.3, we compare the
F1 scores of the resulting models for author labels and all labels. The results show
that the two swp data sets consistently outperform the gnd data sets. Further, the
combined gnd-full+swp-full data set does not perform better than swp-full
alone. Even though the swp-trim data set outperforms swp-full in a number of
cases, the differences are negligible. Yet, further experiments could investigate the
usage of different subset sizes of an author data set.

RQ2 aims at the performance differences between labelings in the BIO format and
in the BIEO format. In Section 6.3, we showed that the BIEO format does not result in
a more expressive author labeling than the BIO format. Thereby, a direct comparison
of the two formats is possible. For our experiments, we use the swp data set and
create labelings in the two different formats for both our training sets and manually
labeled testing sets. The results are shown in Figure 7.1. With the exception of one
case, the models using the BIO format provide better results than the ones using
the BIEO format. The difference is between one and two percent for the F1 score of
author labels. We thereby use the BIO format in all other evaluations.

RQ3 addresses how the probability mass is assigned to a GE constraint for words
wn that are matched to no author name. For this, we compare two approaches.

55

500 1,000 1,500 2,000 2,500

0.84

0.85

0.86

0.87

Reference Sections in Training Set

Pr
ec

is
io

n

Author Labels

500 1,000 1,500 2,000 2,500

0.86

0.88

0.9

Reference Sections in Training Set

R
ec

al
l

Author Labels

BIO BIEO

500 1,000 1,500 2,000 2,500

0.86

0.87

0.88

Reference Sections in Training Set

F1
Sc

or
e

Author Labels

500 1,000 1,500 2,000 2,500

0.962

0.964

0.966

Reference Sections in Training Set

F1
Sc

or
e

All Labels

Figure 7.1.: Results for models using the BIO labeling in comparison to the BIEO
labeling.

56

0.7 0.8 0.9 1

0.8

0.82

0.84

0.86

0.88

Probability Mass of O Label

Pr
ec

is
io

n

Author Labels

0.7 0.8 0.9 1

0.84

0.86

0.88

0.9

Probability Mass of O Label

R
ec

al
l

Author Labels

500 1000 1500

0.7 0.8 0.9 1
0.84

0.86

0.88

Probability Mass of O Label

F1
Sc

or
e

Author Labels

0.7 0.8 0.9 1

0.955

0.96

0.965

Probability Mass of O Label

F1
Sc

or
e

All Labels

Figure 7.2.: Results for different probability masses assigned to the O label for build-
ing GE constraints using the swp-full data set. 500, 1000, and 1500 are
the number of used reference sections.

The first one is to assign the full probability mass of 1 to the label O. In the second
approach, we only assign a specified part of the probability mass to label O. The
remaining probability mass is then distributed over all other labels. Instead of speci-
fying this distribution for all other labels, we derive it from our distantly supervised
training set. For example, we assume that the label B-FN was used in 25% of all
author labels in the distantly supervised training set. Further, we specify that 80%
of our probability mass is assigned to the label O. Therefore, we assign 25% of the
remaining 20% of the probability mass to the label B-FN. The evaluation results are
shown in Figure 7.2. They suggest that increasing the probability mass of the O label
also increases the precision of the author labels but decreases their recall. As a result,
this could provide a way of influencing the trade-off between the two metrics. When
considering the F1 score, a probability mass of O of around 0.9 shows the best results
considering both author labels and all labels.

57

Count
Description

gnd-full gnd-diff swp-trim swp-full
gnd-full

+swp-full

AU Nodes 1,161,744 958,720 998,163 1,203,040 1,407,053
AU as Parent 1,763,518 1,553,250 1,729,806 1,959,727 2,084,520

Table 7.4.: Number of AU nodes and number of leaf nodes with at least one AU node
as parent over all reference section GODDAGs. Total number of leaf nodes:
17,294,919.

RQ4 is focused on the percentage of unmatched words in the training set from
which the GE constraints are generated. Table B.4 shows the number of AU nodes
in the resulting GODDAGs based on different knowledge bases. Further, it shows
the number of nodes that have at least on AU as a parent and thereby the number
of words that are matches to at least one author. Since only between 9% and 12%
of the words are matched to an author, we investigate a balacing of the training set.
Figure 7.3 summarizes the evaluation results for different percentages of unmatched
words for the GE constraints generation. We can see that by increasing the percentage
of unmatched words in the training set from 20% to 69%, the recall for author labels
decreases by almost 10%. At the same time, the precision of author labels does not
increase accordingly. This is especially true for the model that was learned with 1500
reference sections. When looking at the F1 scores, we see for all three models that
by increasing the percentage of unmatched words, the value first increases and then
decreases. The more reference sections were used, the lower is the percentage of
unmatched words that results in the highest F1 scores.

RQ5 considers a variation of the author extraction task. Instead of grouping words
to individual author names and distinguishing between first and last names, a word
wn is only labeled as part of an author name. This results in a labeling which consists
of two labels: A for Author and O for Other. We refer to this as the A-O labeling task.
This can be addressed using our more fine-grained approach that includes the labels
B-FN, B-LN, I-FN, I-LN, and O. For this, we assume all labels except O to represent
the A label. Using the statistics from the fine-grained approach, we can derive the
value of FP (A) with:

FP (A) = true(A)− FN(A)

= total(A)− FP (O)

= total(A)− (predicted(O)− TP (O)).

Here, true(A) refers to the number of words with label A in the manually labeled
testing set and predicted(O) refers to the number of words with the label O that were
predicted by the model. Similarly, we can compute the value of FN(A). This further
allows us to compute TP (A) with:

TP (A) = true(A)− FP (A).

58

20% 30% 40% 50% 60% 70%

0.75

0.8

0.85

0.9

Percentage of Unmatched Words

Pr
ec

is
io

n

Author Labels

20% 30% 40% 50% 60% 70%
0.8

0.85

0.9

Percentage of Unmatched Words

R
ec

al
l

Author Labels

500 1000 1500

20% 30% 40% 50% 60% 70%

0.82

0.84

0.86

0.88

Percentage of Unmatched Words

F1
Sc

or
e

Author Labels

20% 30% 40% 50% 60% 70%
0.94

0.95

0.96

Percentage of Unmatched Words

F1
Sc

or
e

All Labels

Figure 7.3.: Results for different percentages of unmatched words for building GE
constraints using the swp-full data set. The number of matched words
is fixed. 500, 1000, and 1500 are the number of used reference sections.

59

500 1,000 1,500 2,000 2,500

0.86

0.88

0.9

0.92

Reference Sections in Training Set

Pr
ec

is
io

n

Author Labels

500 1,000 1,500 2,000 2,500

0.92

0.94

Reference Sections in Training Set

R
ec

al
l

Author Labels

A-O-model A-O-deriv

500 1,000 1,500 2,000 2,500

0.88

0.9

0.92

Reference Sections in Training Set

F1
Sc

or
e

Author Labels

500 1,000 1,500 2,000 2,500

0.955

0.96

0.965

0.97

Reference Sections in Training Set

F1
Sc

or
e

All Labels

Figure 7.4.: Evaluation results that compare the A-O-deriv labeling with the
A-O-model labeling for the A-O labeling task.

The values of TP (A), FP (A), and FN(A) are sufficient to calculate precision(A),
recall(A), and F1(A). We refer to this as the A-O-deriv labeling. In comparison
to this derivation, we also train separate models that only contain the two labels
A and O. The resulting labeling is referred to as A-O-model. Figure 7.4 shows the
performance of these two approaches for the A-O labeling task. The derived labeling
consistently scores higher than the labeling by the model that was specifically trained
for the A-O labeling task. The latter also shows a stronger fluctuation in the result,
depending on the randomly selected reference sections. Yet, this result only gives
a first intuition and should not be taken as an answer to RQ5. This is because we
trained the model for the A-O labeling task using the same configuration as for the
fine-grained model. To come to a more conclusive answer, different configurations
for A-O-model would need to be considered.

RQ6 focuses on the number of reference sections that are used in the unlabeled
dataset U (see Section 4.2.2). Increasing the size of U also has an impact on the

60

Node Type Metric 500 1,000 1,500 2,000 2,500 5,000 16,470

Author precision 0.7845 0.8328 0.8471 0.8593 0.8473 0.8336 0.8349
Author recall 0.8581 0.8768 0.9103 0.9082 0.9094 0.9118 0.9158
Author F1 score 0.8197 0.8542 0.8776 0.8831 0.8773 0.871 0.8735

All F1 score 0.9512 0.9594 0.9632 0.9653 0.9633 0.9601 0.9606

Table 7.5.: Comparison of models that use different numbers of reference sections for
the model learning. The best score in each row is highlighted.

GE constraints that are used in our model. This is because the GE constraints are
generated from matched author names in U against the external list of author names.
To address the research question, we generate several models with a varying number
of reference sections in U . Table 7.5 compares the models based on the metrics
precision, recall, and F1 score for the author labels and the F1 score for all labels.
Based on the previous evaluation results, we deliberately set the percentage of
unmatched words in the training set to 0.3333 and the probability mass assigned to
O labels to 0.9. We see that a bigger data set does not automatically lead to a better
F1 score for all labels or even the author labels alone. Yet, increasing the number of
reference sections does lead to an improved recall of author labels. Again, further
experiments are needed to confirm this intuition since the same configuration was
used for all models. Table B.3 shows the detailed results per label for the model that
was learned with 16,470 reference sections.

RQ7 takes the Markov order of linear-chain CRFs into consideration. For this, we
compare three different models:

• MO-0: A Markov order zero linear-chain CRF.

• MO-1: A Markov order one linear-chain CRF.

• MO-0-1: A Markov order one linear-chain CRF with Markov order zero states
(see Section 6.4.1).

We compare the models for three different training set sizes while using the swp-full
author data set for creating GE constraints. The results are presented in Figure 7.5.
They show that a Markov order zero model (MO-0) has a better recall but a worse
precision than a Markov order one model (MO-1). The combined MO-0-1 model
does not have a better recall than the MO-0 model or a better precision than the MO-1
model for the training set with 1,000 reference sections. Yet, it always has a better F1
score than the individual models. We did not consider higher Markov orders since
they are not applicable to larger training sets both in terms of hardware requirements
and runtime using the current implementation. Yet, especially for author names that
consist of more than two words, a higher Markov order could lead to improvements.

61

500 1,000 1,500

0.75

0.8

0.85

Reference Sections in Training Set

Pr
ec

is
io

n

Author Labels

500 1,000 1,500

0.86

0.88

0.9

Reference Sections in Training Set

R
ec

al
l

Author Labels

MO-0 MO-1 MO-0-1

500 1,000 1,500

0.8

0.85

Reference Sections in Training Set

F1
Sc

or
e

Author Labels

500 1,000 1,500

0.94

0.95

0.96

Reference Sections in Training Set

F1
Sc

or
e

All Labels

Figure 7.5.: Evaluation results that compare linear-chain CRFs of different Markov or-
ders using the swp-full data set with for different numbers of reference
sections.

62

10 20 30 40

0.84

0.86

0.88

Regularization Parameter

Pr
ec

is
io

n

Author Labels

10 20 30 40

0.86

0.88

0.9

Regularization Parameter

R
ec

al
l

Author Labels

500 1000 1500

10 20 30 40

0.86

0.88

Regularization Parameter

F1
Sc

or
e

Author Labels

10 20 30 40

0.96

0.962

0.964

0.966

Regularization Parameter

F1
Sc

or
e

All Labels

Figure 7.6.: Comparison of linear-chain CRFs with different Markov order using the
swp-full data set with for different numbers of reference sections.

RQ8 aims to compare the impact of different regularization parameter of the
Gaussian prior in a linear-chain CRF model. Again, we use three different training
set sizes and the swp-full author data set to compare nine different regularization
parameters between 5 and 45. Figure 7.6 shows the corresponding evaluation results.
They suggest that modifying the regularization parameter in this range does not
impact the performance to the resulting model. This also confirms a similar statement
by Sutton and McCallum [SM10]. Further experiments could investigate wider ranges
for the regularization parameters. In out other evaluations, we set this parameter to
the value 10. According to Sutton and McCallum [SM10], this is a typical choice for
training sets of a medium size.

In Appendix B.5, we provide some insights on the scalability of our learning
approach by comparing the main memory consumption as well as the runtime for
different numbers of reference sections.

63

8. Conclusion and Future Work

8.1. Conclusion

In this thesis, we presented an approach for the extraction of author names from
reference sections of research papers from the area of German social sciences. This
includes the generation of distantly supervised training sets from unlabeled reference
sections and the learning of a CRF model in combination with GE constraints.

Further, we evaluated several aspects of the author extraction task using our ap-
proach. One of them was the comparison of different author lists as the knowledge
bases for distant supervision. We demonstrated that tagging reference sections with
an author set that comes from a similar research area does improve the performance
of the resulting model. A comparison of the BIO and BIEO formats showed a better
performance of models that use the BIO format. By comparing the assignment of
different probability masses to the O label in a GE constraint when considering an
unmatched word, we observed an strong influence on the model performance. An-
other aspect was the percentage of unmatched words that are used for generating
GE constraints. Our evaluation shows that this percentage can be used to influence
the typical trade-off between precision and recall of the resulting model. This is espe-
cially interesting since we do not rely on manually labeled data. When considering a
variation of the author extraction problem where we only decide if a given word is
part of an author name or not, deriving the labeling from a more complex model has
shown better results than when learning a separate model for this problem. Another
outcome is that increasing the size of the training data set does improve the resulting
model. Also the Markov order of the learned linear-chain CRF was evaluated and
a combination of a Markov order 0 and Markov order 1 model showed the best
performance. We further confirmed that modifying the regularization parameter
of the Gaussian prior in our objective function by up to a factor of ten does not
significantly impact the performance of the model.

8.2. Future Work

There are several ways in which we aim to improve our approach for the author
extraction problem.

For example, we will implement a better handling of cases such as line breaks in
an author name or the usage of “ders.” to refer to a previously mentioned author.

We also plan to extend our GE constraints which currently only consider individual
words. Especially for first or last names that appear frequently, this could reduce

65

the expressive power of the GE constraint as part of the objective function. Our
intuition is that increasing the number of words per GE constraint can contribute
to an objective function that better represents the information from the distantly
supervised training set. For this, also the corresponding constraint functions need to
be extended.

Another approach for improving the performance could be to learn separate
models for different categories of research papers. With the available meta data,
such categories could be journals, conferences, or publishers. Such a separation is
possible due to the large amounts of automatically generated training data using
distant supervision.

Currently, we only consider reference strings that appear in a separate reference
section. In the area of German social sciences, journals such as “Totalitarismus
und Demokratie”1 or “Südosteuropäische Hefte”2 follow a citation style where the
reference strings are listed in footnotes. We plan to extend our approach to also cover
such citation styles by localizing reference strings outside of the reference section.

To construct a citation index, additional fields in the reference strings such as the
title or the publication year need to be extracted. We will thereby extend our approach
to include such fields. For this, it will be interesting to compare the performance of
combined models that cover all fields with the performance of individual models for
each field type.

Also, the steps that precede the bibliographic information extraction will be con-
sidered for improvements. For example, the extraction of text from a PDF document
can result in malformed text. One possible reason is that the PDF contains a scanned
version of the research paper. A heuristic should be implemented that detects such
cases.

The application in a productive context further requires a confidence measure for
a predicted labeling. Thereby, a task is to derive such a confidence measure from the
result of the Viterbi algorithm that is used for calculating the most likely labeling of a
given model (see Section 3.3). This confidence measure can be used in the following
steps in citation index creation. Further, instead of only considering the most likely
label, a number of alternative labels can be provided to the following steps together
with their confidence measures.

Due to the similarity of our approach with the one of Lu et al. [Lu+13], a detailed
comparison could provide interesting insights. We further plan to apply our approach
to previously used datasets such as the CiteSeerX3 dataset used in Councill, Giles,
and Kan [CGK08] or the frequently used Cora dataset [e.g. PM04; CGK08; Wu+14].
In order to apply a distantly supervised approach, related sets of research papers as
well as knowledge bases need to be identified.

1http://www.hait.tu-dresden.de/td/home.asp (accessed Aug. 6, 2016)
2http://suedosteuropaeische-hefte.org/ (accessed Aug. 6, 2016)
3http://citeseerx.ist.psu.edu/index (accessed Aug. 6, 2016)

66

http://www.hait.tu-dresden.de/td/home.asp
http://suedosteuropaeische-hefte.org/
http://citeseerx.ist.psu.edu/index

Appendices

67

A. Author Extraction Example

A.1. Factor Product

Ψ(LN1, FN2, EC2)

LN1 LN2 EC2 Value

false false false (10 · 10) · 1 = 100
false false true (20 · 1) · 1 = 20
false true false (10 · 10) · 30 = 3,000
false true true (20 · 20) · 30 = 12,000
true false false (10 · 10) · 10 = 1,000
true false true (1 · 1) · 10 = 10
true true false (10 · 10) · 1 = 100
true true true (1 · 20) · 1 = 20

Table A.1.: Results of the factor product (Ψ(LN1, EC2) × Ψ(LN2, EC2)) ×
Ψ(LN1, LN2) of the factors in Table 3.1. For an exemplary calculation see
Appendix A.2.1.

A.2. Gibbs Distribution

A.2.1. Exemplary Calculation

The following calculation is based on factor graph (a) in Figure 3.3 with X =
{LN1, LN2, EC2}. It uses the factors defined in Table 3.1.

P̃ (LN1=true, LN2=false, EC2=false) =

K∏
k=1

Ψk (Dk)

= (Ψ(LN1=true, EC2=false)

×Ψ(LN2=false, EC2=false))

×Ψ(LN1=true, LN2=false)

= (10 · 10) · 10

= 1,000

68

Z =
∑

EC2,LN2,LN1

P̃ (LN1, LN2, EC2)

= Ψ(LN1=false, LN2=false, EC2=false)

+ Ψ(LN1=false, LN2=false, EC2=true)

+ . . .

+ Ψ(LN1=true, LN2=true, EC2=true)

= 16,250

P (LN1=true, LN2=false, EC2=false) =
1

Z
P̃ (LN1=true, LN2=false, EC2=false)

=
1

16,250
· 1,000

≈ 0.0615

A.2.2. Full Distribution

P (LN1, LN2, EC2)

LN1 LN2 EC2 Value

false false false 100/16,250 ≈ 0.0062
false false true 20/16,250 ≈ 0.0012
false true false 3,000/16,250 ≈ 0.1846
false true true 12,000/16,250 ≈ 0.7385
true false false 1,000/16,250 ≈ 0.0615
true false true 10/16,250 ≈ 0.0006
true true false 100/16,250 ≈ 0.0062
true true true 20/16,250 ≈ 0.0012

Table A.2.: Values of the Gibbs distribution P (LN1, LN2, EC2) using the two factors
in Table 3.1.

A.3. Conditional Random Fields

A.3.1. Calculation of Factor With D ⊆ X

With the following calculation we demonstrate that a factor Ψ(D) with D ⊆ X cancels
out during the calculation of P (Y|X). For this we consider two factors, Ψ(LN1, EC1)
and Ψ(EC1, EC2). The resulting factor graph is shown in Figure A.1.

69

LN1

EC1 EC2

Ψ(LN1, EC1)

Ψ(EC1, EC2)

Figure A.1.: Factor graph containing two factors where Ψ(EC1, EC2) only contains
observed variables.

Based on the definition of CRFs in Equation (3.9) we have for example:

P (LN1=true, EC1=true | EC2=false)

=
1

Z(EC1=true, EC2=false)
· P̃ (LN1=true, EC1=true, EC2=false)

=
P̃ (LN1=true, EC1=true, EC2=false)

P̃ (LN1=false, EC1=true, EC2=false)

+ P̃ (LN1=true, EC1=true, EC2=false)

=
Ψ(LN1=true, EC1=false)×Ψ(EC1=true, EC2=false)

Ψ(LN1=true, EC1=false)×Ψ(EC1=true, EC2=false)
+ Ψ(LN1=true, EC1=true)×Ψ(EC1=true, EC2=false)

=
Ψ(EC1=true, EC2=false)×Ψ(LN1=true, EC1=false)

Ψ(EC1=true, EC2=false)× (Ψ(LN1=true, EC1=false)
+ Ψ(LN1=true, EC1=true))

=
Ψ(LN1=true, EC1=false)

Ψ(LN1=true, EC1=false) + Ψ(LN1=true, EC1=true)

=
P̃ (LN1=true, EC1=true)

P̃ (LN1=false, EC1=true) + P̃ (LN1=true, EC1=true)

= P (LN1=true | EC1=true) .

Thereby, the distributive property allows us to factor out Ψ(EC1=true, EC2=false)
in the denominator which allows us to completely remove this factor from the
equation. This example demonstrates that a factor with D ⊆ X does not have an
impact on the result of P (Y|X).

70

A.3.2. Exemplary Calculation

The following calculation is based on factor graph (a) in Figure 3.3 with X = {EC2}
and Y = {LN1, LN2}. It uses the factors defined in Table 3.1.

P̃ (LN1=true, LN2=false, EC2=false) =

K∏
k=1

Ψk (Dk)

= (Ψ(LN1=true, EC2=false)

×Ψ(LN2=false, EC2=false))

×Ψ(LN1=true, LN2=false)

= (10 · 10) · 10

= 1,000

Z(EC2=false) =
∑
LN2

P̃ (LN1, LN2, EC2=false)

= P̃ (LN1=false, LN2=false, EC2=false)

+ P̃ (LN1=false, LN2=true, EC2=false)

+ P̃ (LN1=true, LN2=false, EC2=false)

+ P̃ (LN1=true, LN2=true, EC2=false)

= 100 + 3,000 + 1,000 + 100

= 4,200

P (LN1=true, LN2=false | EC2=false)

=
1

Z(EC2=false)
· P̃ (LN1=true, LN2=false, EC2=false)

=
1

4,200
· 1,000

≈ 0.2381

71

A.4. Linear-Chain CRFs

A.4.1. Additional Factors

Ψ(start, LN1)

start LN1 Value

false false 1
false true 1
true false 30
true true 10

Ψ(LN1, EC1)

LN1 EC1 Value

false false 30
false true 1
true false 1
true true 10

Table A.3.: Two additional factors for the author extraction example in Figure 3.4

A.4.2. Additional Energy Functions

Ψ(start, LN1)

start LN1 Value

false false − ln(1) = 0
false true − ln(1) = 0
true false − ln(30) ≈ −3.4012
true true − ln(10) ≈ −2.3026

Ψ(LN1, EC1)

LN1 EC1 Value

false false − ln(30) ≈ −3.4012
false true − ln(1) = 0
true false − ln(1) = 0
true true − ln(10) ≈ −2.3026

Table A.4.: Energy functions for the additional factors in Table A.3.

A.4.3. Feature Functions

Index Feature function fk Weight θk

k = 1 1 {LN1=false,start=true} − ln(30) ≈ −3.4012
k = 2 1 {LN1=true,start=true} − ln(10) ≈ −2.3026
k = 3 1 {LN2=false, LN1=true} − ln(10) ≈ −2.3026
k = 4 1 {LN2=true, LN1=false} − ln(30) ≈ −3.4012

Table A.5.: Feature functions f̃k(Yn, Yn−1) representing Ψ(start, LN1) and
Ψ(LN1, LN2). Note the inverted argument order of f̃k.

72

Index Feature function fl Weight θl

l = 1 1 {LN1=false, EC1=false} − ln(30) ≈ −3.4012
l = 2 1 {LN1=true, EC1=true} − ln(10) ≈ −2.3026
l = 3 1 {LN2=false, EC2=false} − ln(10) ≈ −2.3026
l = 4 1 {LN2=true, EC2=false} − ln(10) ≈ −2.3026
l = 5 1 {LN2=true, EC2=true} − ln(20) ≈ −2.9957

Table A.6.: Feature functions f̃l(Yn, X̃n) representing Ψ(LN1, EC1) and
Ψ(LN2, EC2). Note the inverted argument order of f̃l.

73

A.4.4. Exemplary Calculation

The following calculation is based on the linear-chain CRF from Figure 3.4 with
X = {EC1, EC2} and Y = {start, LN1, LN2}. It uses the feature functions defined
in Appendix A.4.3. The assignments are based on the second reference string in
Figure 3.1.

P̃ (start=true, LN1=true, LN2=false, EC1=true, EC2=false)

= exp

{
−

N∑
n=1

(
K∑
k=1

θkf̃k

(
Yn, Yn−1

)
+

L∑
l=1

θlf̃l

(
Yn, X̃n

))}
= exp

{
−
(
θk=1fk=1(LN1=true,start=true)

+ · · ·+ θk=4fk=4(LN1=true,start=true)

+ θl=1fl=1(LN1=true, EC1=true)

+ · · ·+ θl=5fl=5(LN1=true, EC1=true)

+ θk=1fk=1(LN2=false, LN1=true)

+ · · ·+ θk=4fk=4(LN2=false, LN1=true)

+ θl=1fl=1(LN2=false, EC2=false)

+ · · ·+ θl=5fl=5(LN2=false, EC2=false)
)}

= exp
{
−
(
− log(30) · 0− log(10) · 1− log(10) · 0− log(30) · 0

− log(30) · 0− log(10) · 1− log(10) · 0− log(10) · 0− log(20) · 0

− log(30) · 0− log(10) · 0− log(10) · 1− log(30) · 0

− log(30) · 0− log(10) · 0− log(10) · 1− log(10) · 0− log(20) · 0
)}

= exp
{
−
(
− log(10)− log(10)− log(10)− log(10)

)}
= exp

{
4 · log(10)

}
= 10,000

74

Z(EC1=true, EC2=false)

=
∑

start,LN1,LN2

P̃ (start, LN1, LN2, EC1=true, EC2=false)

= P̃ (start=false, LN1=false, LN2=false, EC1=true, EC2=false)

+ P̃ (start=false, LN1=false, LN2=true, EC1=true, EC2=false)

+ P̃ (start=false, LN1=true, LN2=false, EC1=true, EC2=false)

+ P̃ (start=false, LN1=true, LN2=true, EC1=true, EC2=false)

+ P̃ (start=true, LN1=false, LN2=false, EC1=true, EC2=false)

+ P̃ (start=true, LN1=false, LN2=true, EC1=true, EC2=false)

+ P̃ (start=true, LN1=true, LN2=false, EC1=true, EC2=false)

+ P̃ (start=true, LN1=true, LN2=true, EC1=true, EC2=false)

= 10 + 300 + 1,000 + 100 + 3,000 + 9,000 + 10,000 + 1,000

= 24,410

P (start=true, LN1=true, LN2=false | EC1=true, EC2=false)

=
1

Z(EC1=true, EC2=false)

· P̃ (start=true, LN1=true, LN2=false, EC1=true, EC2=false)

=
1

24,410
· 10,000

≈ 0.41

75

A.5. Log-Likelihood Function

The following calculation is based on factor graph in Figure 3.4 that represents a
linear-chain CRF with X = {EC1, EC2} and Y = {start, LN1, LN2}. It uses the
feature functions and corresponding weights from Appendix A.4.3. Further, we have
D = {d (1), . . . , d (4)} consisting of the four reference strings in Figure 3.1. Based on
this, we have the following log-likelihood function:

`
(
θ̃ : D

)
=

M∑
m=1

(
−

N∑
n=1

(
K∑
k=1

θkf̃k

(
Y (m)
n , Y

(m)
n−1

)
+

L∑
l=1

θlf̃l

(
Y (m)
n , X̃(m)

n

))

− logZ
(
X(m)

))

=−
N∑

n=1

(
K∑
k=1

θkf̃k

(
Y (1)
n , Y

(1)
n−1

)
+

L∑
l=1

θlf̃l

(
Y (1)
n , X̃(1)

n

))
− logZ

(
X(1)

)
+ · · ·

+−
N∑

n=1

(
K∑
k=1

θkf̃k

(
Y (4)
n , Y

(4)
n−1

)
+

L∑
l=1

θlf̃l

(
Y (4)
n , X̃(4)

n

))
− logZ

(
X(4)

)
=
(

log(30) + log(30) + log(30) + log(10)
)
− log (370,510)(

log(10) + log(10) + log(10) + log(10)
)
− log (24,410)(

log(30) + log(30) + log(30) + log(20)
)
− log (567,360)(

log(30) + log(30) + log(30) + log(20)
)
− log (567,360)

≈12.5062− 12.8226

+ 9.2103− 10.1027

+ 13.1993− 13.2487

+ 13.1993− 13.2487

≈− 1.3076

Note that, for the second reference string d (2), we calculate the values of the unnor-
malized measure

P̃ (Y(2) | X(2)) = −
N∑

n=1

(
K∑
k=1

θkf̃k

(
Y (2)
n , Y

(2)
n−1

)
+

L∑
l=1

θlf̃l

(
Y (2)
n , X̃(2)

n

))
and the corresponding normalizing constant

Z
(
X(2)

)
in Appendix A.4.4.

76

A.6. Distantly Supervised Training Sets

A.6.1. Author Name Matching

Table A.7 contains an author list that we use for our author matching example.
Figure A.2, Figure A.3, and Figure A.4 show the final GODDAGs for the first three
reference strings in Figure 3.1, matched against the authors in Table A.7.

First Names Last Names

Friedrich Müller
Fritz Müller
Max Müller
Max Wagner
Max Friedrich Schmidt
Mia Friedrich
Mia Wagner

Table A.7.: Example author list for demonstrating the author matching.

Mia Friedrich (2010): Title . . . Springer.

FN LN O O O

AU

root

Figure A.2.: Final GODDAG for the first reference string in Figure 3.1.

77

Müller, Friedrich (2010): Title . . . Springer.

LN FN O O O

AU

root

Figure A.3.: Final GODDAG for the second reference string in Figure 3.1.

Max Müller, Fritz Schmidt (2010): . . . Springer.

FN LN FN O O O

AU AU

root

Figure A.4.: Final GODDAG for the third reference string in Figure 3.1.

78

A.6.2. GE Constraints

Word B-FN B-LN I-FN I-LN O

(2010): 0/1 = 0 0/1 = 0 0/1 = 0 0/1 = 0 1/1 = 1
Berlin 0/2 = 0 0/2 = 0 0/2 = 0 0/2 = 0 2/2 = 1
Fourth 0/1 = 0 0/1 = 0 0/1 = 0 0/1 = 0 1/1 = 1
Friedrich 0/4 = 0 2/4 = 0.5 0/4 = 0 1/4 = 0.25 1/4 = 0.25
Fritz 0/1 = 0 0/1 = 0 1/1 = 1 0/1 = 0 0/1 = 0
Max 3/3 = 1 0/3 = 0 0/3 = 0 0/3 = 0 0/3 = 0
Mia 2/2 = 1 0/2 = 0 0/2 = 0 0/2 = 0 0/2 = 0
Müller, 0/3 = 0 2/3 ≈ 0.33 0/3 = 0 1/3 ≈ 0.67 0/3 = 0
Schmidt 0/1 = 0 0/1 = 0 0/1 = 0 1/1 = 1 0/1 = 0
Springer. 0/2 = 0 0/2 = 0 0/2 = 0 0/2 = 0 2/2 = 1
the 0/1 = 0 0/1 = 0 0/1 = 0 0/1 = 0 1/1 = 1
Wagner, 0/2 = 0 1/2 = 0.5 0/2 = 0 1/2 = 0.5 0/2 = 0

Table A.8.: Example GE constraints based on the reference strings in Figure 3.1 using
the author list in Table A.7. Additionally, every third unmatched word is
selected, starting with “(2010):” in the first reference string.

79

A.7. Feature Engineering

Feature Paper
Type Name [PM04] [CGK08] [Wu+14] [BM07]

Local STARTSWITHCAP x x x
ALLCAP x x x
MIXEDCAP x x
NUMDIGITS x x x
DIGITS x x x
ALLDIGITS x x
PHONEORZIP x
DOTS x
DASHES x
STARTSWITHQUOTES x x
ENDSWITHQUOTES x x
ACRONYM x
INITIAL x
CHARACTER x
NUMCHARACTERS x
ALLCHARACTERS x x
CAPLETTER x
PUNCTUATION x
CONTPUNCTUATION x x
STOPPUNCTUATION x x
PAIREDBRACES x x
VOLUME x x
PAGERANGE x x x
YEAR x x x
URL x x
EMAIL x
WORD x x x x

Layout BINNUMBER 3 12 12

Lexicon AUTHOR x
PUBLISHER x x x
FEMALE/MALENAME x x
LASTNAME x
CITY x
MONTH x x x
NOTES x x x
AFFILIATION x

Table A.9.: Survey of mentioned features for reference string extraction Peng and
McCallum [PM04], Councill, Giles, and Kan [CGK08], Wu et al. [Wu+14],
and Bellare and McCallum [BM07].

80

Feature
Type Name Description

Local STARTSWITHCAP Starts with a capitalized letter.
ALLCAP All characters are capitalized.
MIXEDCAP A character, except the first, is capitalized.
NUMDIGITS Contains a specified number of digits.
DIGITS Contains at least one digit.
ALLDIGITS All characters are digits.
PHONEORZIP Phone number or zip code.
DOTS Contains at least one dot.
DASHES Contains at least one dash.
STARTSWITHQUOTES Starts with quotation marks.
ENDSWITHQUOTES Ends with quotation marks.
ACRONYM Is an acronym.
INITIAL Is an initial such as “A.”.
CHARACTER Is a single character.
NUMCHARACTERS Contains a specified number of characters.
ALLCHARACTERS Contains only characters.
CAPLETTER Is a single capitalized character.
PUNCTUATION Contains a punctuation mark.
CONTPUNCTUATION Contains a punct. mark such as “,” or “;”.
STOPPUNCTUATION Contains a punct. mark such as “.”.
PAIREDBRACES Starts and ends with braces.
VOLUME Matches volume number reg. expression.
PAGERANGE Matches page range reg. expression.
YEAR Matches year number reg. expression.
URL Matches URL reg. expression.
EMAIL Matches Email reg. expression.
WORD The word itself.

Layout BINNUMBER Is assigned to a bin, based on line position.

Lexicon AUTHOR Appears in author lexicon.
PUBLISHER Appears in publisher lexicon.
FEMALE/MALENAME Appears in a female or male name lexicon.
LASTNAME Appears in a last name dictionary.
CITY Appears in a city name dictionary.
MONTH Is word like “Jan.” or “Feb.”.
NOTES Is word like “appeared” or “submitted”.
AFFILIATION Is word like “institution” or “Labs”.

Table A.10.: Description of the features in Table A.9 [cf. PM04; CGK08; Wu+14; BM07]

81

B. Evaluation

B.1. Accuracy vs. F1 Score

In this section, we discuss the relation between the metrics accuracy and F1 score in
the context of our evaluation. As an example, we use the author extraction problem
with the following five labels that follow the BIO format (see Section 5.3):

Val(Yn) = {B-FN,B-LN,I-FN,I-LN,O}.

First, we consider TP(L), FP(L), TN (L), and FN (L). As discussed in Chapter 7,
they refer to the number of True Positive, False Positive, True Negative, and False
Negative assignments of the labels in a set of label L.

As an example, we have L = {B-FN}. Based on this, the value of TP(L) is the
number of words that are correctly labeled with B-FN and FP(L) is the number of
words which are incorrectly labeled with B-FN.

For the cases TN (L) and FN (L), we now consider all labels that are not in L:

NotL = Val(Yn) \ L.

In other words, when considering L as the positive labeling, the labels in NotL are
considered negative labelings in TN (L) and FN (L).

For our example, we have NotL = Val(Yn) \ L = {B-LN,I-FN,I-LN,O}. This
results in TN (L) being the number of words which are correctly labeled with one
of the labels in NotL. Further, FN (L) is the number of words which are incorrectly
labeled with one of the labels in NotL.

This also gives us for example TN (L) = TP(NotL). Further, we have for example
TN (L) + TP(NotL) = TN (L ∪NotL).

Using this, we have:

accuracy(L) =
TP (L) + TN(L)

TP (L) + FP (L) + TN(L) + FN(L)

=
TP (L) + TP (NotL)

TP (L) + FP (L) + TP (NotL) + FP (NotL)

=
TP (L ∪NotL)

TP (L ∪NotL) + FP (L ∪NotL)

= precision(L ∪NotL).

= precision(Val(Yn)).

83

Similarly, we can show that accuracy(L) = recall(Val(Yn)). Since the F1 score is the
harmonic mean of precision and recall, we result in:

accuracy(L) = F1(Val(Yn)).

B.2. Configuration

RQ Figure/ Author Markov Gaussian Number of Unlabeled O Label
Table List Order Parameter Ref. Sections Percentage Prob. Mass

1 Table 7.2
Multiple M-0-1 10 Multiple 0.5 0.82586

&Table 7.3
2 Figure 7.1 swp-full M-0-1 10 Multiple 0.5 0.82586
3 Figure 7.2 swp-full M-0-1 10 Multiple 0.5 Multiple
4 Figure 7.3 swp-full M-0-1 10 Multiple Multiple1 0.82586
5 Figure 7.4 swp-full M-0-1 10 Multiple 0.5 0.82586
6 Table 7.5 swp-full M-0-1 10 Multiple 0.3333 0.9
7 Figure 7.5 swp-full Multiple 10 Multiple 0.5 0.82586
8 Figure 7.6 swp-full M-0-1 Multiple Multiple 0.5 0.82586

Table B.1.: Configuration for the different evaluations. For the value of fields that
contain “Multiple”, we refer to the corresponding figure or table. A
probability mass of 0.82586 for O labels reflects the distribution in the
testing set.

1Unlabeled Percentages: 0.2, 0.3333, 0.4286, 0.5, 0.5556, 0.6, 0.6364, 0.6667, 0.6923

84

B.3. Feature Engineering

Feature
Name Description

CAPITALIZED [^\\p{L}]*\\p{Lu}.*
PERIOD [^\\.]*\\.[^\\.]*
PERIODS .*\\..*\\..*
CONTAINSPERIOD .+\\..+
ENDSWITHPERIOD .+\\..+
CONTAINSCOMMA .+,.+
ENDSWITHCOMMA .*,
CONTAINSDASH .+-.+
ENDSWITHDASH .*-
NUMBER \\D*\\d+\\D*
NUMBERS .*\\d+\\D+\\d+.*
ONELETTER [^\\p{L}]*\\p{L}[^\\p{L}]*
BRACES .*\\(.*\\).*
BRACKETS .*\\[.*\\].*
YEAR \\D*(1[6-9][0-9][0-9]|20[0-1][0-9])\\D*
MONTH ([^\\p{L}]*|.*[^\\p{L}]+)(

(monthNames)|(monthAbbreviations))(
[^\\p{L}]*|[^\\p{L}]+.*)

Table B.2.: Used regular expressions for detecting layout features.

85

B.4. Detailed Results

Label Precision Recall F1 Score Predicted Correct True
Labels Labels Labels

B-FN 0.6529 0.8875 0.7523 749 489 551
B-LN 0.8881 0.9296 0.9083 2,823 2,507 2,697
I-FN 0.8935 0.9287 0.9107 3,323 2,969 3,197
I-LN 0.5877 0.8145 0.6827 844 496 609
I-O 0.0000 0.0000 0.0000 0 0 1
O 0.9903 0.9701 0.9801 32,775 32,457 33,459

Author Labels 0.8349 0.9158 0.8735 7,739 6,461 7,055
All Labels 0.9606 0.9606 0.9606 40,514 38,918 40,514

Table B.3.: Detailed results for the linear-chain CRF model consisting of 16,470 ref-
erence sections in Table 7.5. Predicted labels is the number of labels that
the model assigned. Correct labels is the number of labels that the model
correctly assigned. True labels is the number of labels in the testing set.

B.5. Scalability

Reference Main Memory Runtime Iterations Minutes per
Sections Usage in GBytes in Minutes Iteration

500 7.9424 498.45 827 0.6027
1,000 12.4670 721.1333 645 1.118
1,500 12.5132 344.8 202 1.7069
2,000 12.2374 1122.6833 486 2.31
2,500 12.4078 1099.1833 312 3.524
3,000 12.4078 2583.6667 589 4.2865
5,000 18.1346 1493 157 9.5096

16,470 52.2180 6650.5 208 31.9736

Table B.4.: Statistics on the main memory usage and runtime for learning the models
used in Table 7.5. The number of reference sections was used as unlabeled
data for the distant supervision.

86

Subject Index

accuracy 53, 83
ambiguous annotation 29, 30
assignment 9, 10, 12, 14, 16, 18, 29, 74

backward variable 22
Bayesian network 11, 12, 16

canonical outcome space 10
conditional probability 10, 17
conditional probability distribution ix, 10, 16, 17
conditional random field ix, 2, 7, 17

discriminative model 16
distant supervision 2, 5, 6, 26–28, 31, 33

edge 11, 12
energy function 15, 72
Euclidean norm 25
event 7–10
event space 7–9
evidence 20
expectation 11

F1 score 5, 6, 53, 55, 57, 58, 61, 83, 84
factor 12–15, 17–20, 22, 50, 68–72
factor graph 14, 39, 50, 68, 69, 71, 76
factor product 12–14, 19, 21, 68
factor scope 12, 14
feature conjunction 41
feature function 15, 16, 18, 19, 23–25, 72–74, 76
forward variable 22
forward-backward algorithm 21, 23–25, 39
full assignment 10, 20, 22, 23, 29
function 9, 26

Gaussian prior 25, 39, 50, 63, 65
GE constraint 2, 65, 66
GE criterion 2, 5, 6

87

generalized expectation ix, 2, 25, 28, 30
generative model 16
Gibbs distribution 13, 14, 17, 69
gradient 26

Hessian 26

joint distribution 9–12, 16, 17
joint probability 9

L-BFGS 26
label regularization 28, 31, 36
likelihood function 24
linear-chain CRF 18–21, 23–26, 34, 36–40, 43, 49, 50, 61–63, 65, 74, 76, 86
log-likelihood function 24–26
log-linear model 16, 18, 23

marginal distribution 9, 12, 30, 31
Markov network 11, 12, 14, 16, 17
Markov order 39, 50, 61–63, 65
maximum likelihood 24
maximum likelihood estimation 25

node 11, 12, 14
normalizing constant 14, 17, 20

objective function 24, 26, 28, 31, 66
observed variable 11, 12, 16–20, 40, 70
outcome space 7–10

partial annotation 29
partitioning function 14
power set 7, 29
precision 5, 6, 53, 57, 58, 61, 65, 84
prior distribution 16
probabilistic graphical model 11, 17
probability distribution 7–9, 11, 13–16, 20, 36, 37, 49
probability query 20

random variable 9–15, 18, 20, 21, 28–30
recall 5, 6, 53, 57, 58, 61, 65, 84
regularization parameter 25, 63, 65

stationary point 26

target variable 11, 12, 16–20, 23, 29, 31, 35, 36, 39, 40, 50

Viterbi algorithm 23, 66

88

Acknowledgments

I wish to thank, first and foremost, my advisers René Pickhardt and Steffen Staab for
their combined guidance during my research. This thesis benefited from both their
expertise and would not have been possible without their support. Steffen Staab
also suggested the usage of conditional random fields in combination with distant
supervision for the author extraction problem.

Next, I want to thank Zeljko Carevic for his discussions and for providing the
Sowiport dataset. I also want to thank Daniel Janke for his outstanding support
regarding the evaluation servers.

Special thanks to Michael Ruster, Stefan Becker, Melanie Koloseike, and Kevin
Keul for proofreading this thesis.

Last but not least, I want to thank my family and friends for the endless support
and motivation throughout my study.

89

References

[AG07] Galen Andrew and Jianfeng Gao. „Scalable training of L 1-regularized
log-linear models“. In: Proceedings of the 24th international conference on
Machine learning. ACM. 2007, pages 33–40 (cited on page 26).

[BA03] Kenneth P Burnham and David Anderson. „Model selection and multi-
model inference“. In: A Pratical informatio-theoric approch. Sringer (2003)
(cited on page 30).

[BHB11] Edward Benson, Aria Haghighi, and Regina Barzilay. „Event discovery
in social media feeds“. In: Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies-
Volume 1. Association for Computational Linguistics. 2011, pages 389–398
(cited on page 27).

[Bil+03] Mikhail Bilenko et al. „Adaptive name matching in information inte-
gration“. In: IEEE Intelligent Systems 18.5 (2003), pages 16–23 (cited on
page 53).

[BM07] Kedar Bellare and Andrew McCallum. „Learning extractors from unla-
beled text using relevant databases“. In: Sixth international workshop on
information integration on the web. 2007 (cited on pages 38, 80, 81).

[BNS94] Richard H Byrd, Jorge Nocedal, and Robert B Schnabel. „Representations
of quasi-Newton matrices and their use in limited memory methods“. In:
Mathematical Programming 63.1-3 (1994), pages 129–156 (cited on page 26).

[C+99] Mark Craven, Johan Kumlien, et al. „Constructing biological knowl-
edge bases by extracting information from text sources.“ In: ISMB. Vol-
ume 1999. 1999, pages 77–86 (cited on page 27).

[CGK08] Isaac G Councill, C Lee Giles, and Min-Yen Kan. „ParsCit: an Open-
source CRF Reference String Parsing Package.“ In: LREC. 2008 (cited on
pages 5, 6, 38, 40, 43, 46, 53, 66, 80, 81).

[CR99] Stanley F Chen and Ronald Rosenfeld. A Gaussian prior for smoothing
maximum entropy models. Technical report. DTIC Document, 1999 (cited
on pages 25, 38).

[FK15] Miao Fan and Doo Soon Kim. „Detecting Table Region in PDF Docu-
ments Using Distant Supervision“. In: arXiv preprint arXiv:1506.08891
(2015) (cited on page 28).

91

[GBH09] Alec Go, Richa Bhayani, and Lei Huang. „Twitter sentiment classification
using distant supervision“. In: CS224N Project Report, Stanford 1 (2009),
page 12 (cited on pages 27, 28).

[GBL98] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. „CiteSeer: An auto-
matic citation indexing system“. In: Proceedings of the third ACM conference
on Digital libraries. ACM. 1998, pages 89–98 (cited on page 5).

[GG05] Cyril Goutte and Eric Gaussier. „A probabilistic interpretation of preci-
sion, recall and F-score, with implication for evaluation“. In: European
Conference on Information Retrieval. Springer. 2005, pages 345–359 (cited
on page 53).

[GGH12] Tudor Groza, AAstrand Grimnes, and Siegfried Handschuh. „Refer-
ence Information Extraction and Processing Using Random Conditional
Fields“. In: Information Technology and Libraries 31.2 (2012), pages 6–20
(cited on pages 5, 6, 39).

[Her15] Ulrich Herb. Open Science in der Soziologie: Eine interdisziplinäre Bestand-
saufnahme zur offenen Wissenschaft und eine Untersuchung ihrer Verbreitung
in der Soziologie. Verlag Werner Hülsbusch, 2015 (cited on page 1).

[HM12] Hospice Houngbo and Robert E Mercer. „Method mention extraction
from scientific research papers“. In: (2012) (cited on pages 35, 36).

[Hoc13] Juliane Hochstein. „Ihr Bibliothekare habt doch jetzt... Ein Jahr Gemein-
same Normdatei“. In: Theke aktuell 20.1 (2013), pages 19–23 (cited on
page 45).

[K+04] Daniel B Klein, Eric Chiang, et al. „The Social Science Citation Index: A
Black Box – with an Ideological Bias?“ In: Econ Journal Watch 1.1 (2004),
pages 134–165 (cited on page 1).

[KF09] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles
and techniques. MIT press, 2009 (cited on pages 7–17, 20, 21, 23–26).

[LMP01] John Lafferty, Andrew McCallum, and Fernando Pereira. „Conditional
random fields: Probabilistic models for segmenting and labeling se-
quence data“. In: Proceedings of the eighteenth international conference on
machine learning, ICML. Volume 1. 2001, pages 282–289 (cited on pages 2,
5, 17, 19).

[Lu+13] Chunliang Lu et al. „Web entity detection for semi-structured text data
records with unlabeled data“. In: International Journal of Computational
Linguistics and Applications (2013) (cited on pages 2, 5, 6, 28, 33, 34, 36, 39,
66).

[LW12] Xiao Ling and Daniel S Weld. „Fine-Grained Entity Recognition.“ In:
AAAI. 2012 (cited on page 39).

[Mac03] David JC MacKay. Information theory, inference and learning algorithms.
Cambridge university press, 2003 (cited on page 30).

92

[Mar60] Andrei Andreyevich Markov. „The theory of algorithms“. In: Am. Math.
Soc. Transl. 15 (1960), pages 1–14 (cited on page 39).

[MC12] Micol Marchetti-Bowick and Nathanael Chambers. „Learning for mi-
croblogs with distant supervision: Political forecasting with twitter“. In:
Proceedings of the 13th Conference of the European Chapter of the Association
for Computational Linguistics. Association for Computational Linguistics.
2012, pages 603–612 (cited on page 28).

[McC+00] Andrew Kachites McCallum et al. „Automating the construction of in-
ternet portals with machine learning“. In: Information Retrieval 3.2 (2000),
pages 127–163 (cited on pages 5, 46).

[McC02] Andrew Kachites McCallum. Mallet: A machine learning for language toolkit.
2002. URL: http://mallet.cs.umass.edu/ (visited on 08/06/2016)
(cited on pages 41, 50).

[MF98] Ingo Mörth and Gerhard Fröhlich. „Auf Spurensuche nach der „in-
formellen Logik tatsächlichen Lebens ““. In: Symbolische Anthropologie
der Moderne. Kulturanalysen nach Clifford Geertz, Frankfurt aM/New York
(1998), pages 7–50 (cited on page 54).

[Min+09] Mike Mintz et al. „Distant supervision for relation extraction without
labeled data“. In: Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 2-Volume 2. Association for
Computational Linguistics. 2009, pages 1003–1011 (cited on page 27).

[MM07] Gideon S Mann and Andrew McCallum. „Simple, robust, scalable semi-
supervised learning via expectation regularization“. In: Proceedings of the
24th international conference on Machine learning. ACM. 2007, pages 593–
600 (cited on pages 2, 28, 30).

[MM08] Gideon S Mann and Andrew McCallum. „Generalized Expectation Cri-
teria for Semi-Supervised Learning of Conditional Random Fields“. In:
ACL-08: HLT (2008), page 870 (cited on pages 30, 31, 39).

[MM10] Gideon S Mann and Andrew McCallum. „Generalized expectation cri-
teria for semi-supervised learning with weakly labeled data“. In: The
Journal of Machine Learning Research 11 (2010), pages 955–984 (cited on
pages 24, 30, 31, 36).

[MW07] Philipp Mayr and Anne-Kathrin Walter. „An exploratory study of Google
Scholar“. In: Online information review 31.6 (2007), pages 814–830 (cited
on page 1).

93

http://mallet.cs.umass.edu/

[NM11] Truc-Vien T Nguyen and Alessandro Moschitti. „End-to-end relation ex-
traction using distant supervision from external semantic repositories“.
In: Proceedings of the 49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies: short papers-Volume 2.
Association for Computational Linguistics. 2011, pages 277–282 (cited
on page 27).

[Oht+14] Masaya Ohta et al. „Empirical evaluation of CRF-based bibliography
extraction from reference strings“. In: Document Analysis Systems (DAS),
2014 11th IAPR International Workshop on. IEEE. 2014, pages 287–292
(cited on page 39).

[PB12] Matthew Purver and Stuart Battersby. „Experimenting with distant su-
pervision for emotion classification“. In: Proceedings of the 13th Conference
of the European Chapter of the Association for Computational Linguistics. As-
sociation for Computational Linguistics. 2012, pages 482–491 (cited on
page 28).

[PG97] William E Payne and James I Garrels. „Yeast Protein Database (YPD): a
database for the complete proteome of Saccharomyces cerevisiae“. In:
Nucleic Acids Research 25.1 (1997), pages 57–62 (cited on page 27).

[PM04] Fuchun Peng and Andrew McCallum. „Accurate information extrac-
tion from research papers using conditional random fields“. In: HLT-
NAACL04. 2004 (cited on pages 5, 6, 39, 40, 66, 80, 81).

[Pow11] David Martin Powers. „Evaluation: From precision, recall and f-measure
to roc., informedness, markedness & correlation“. In: Journal of Machine
Learning Technologies 2.1 (2011), pages 37–63 (cited on page 53).

[R+11] Alan Ritter, Sam Clark, Oren Etzioni, et al. „Named entity recognition in
tweets: an experimental study“. In: Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing. Association for Computational
Linguistics. 2011, pages 1524–1534 (cited on page 27).

[RM95] Lance A Ramshaw and Mitchell P Marcus. „Text chunking using transfor-
mation-based learning“. In: arXiv preprint cmp-lg/9505040 (1995) (cited
on page 35).

[SH00] C Michael Sperberg-McQueen and Claus Huitfeldt. „Goddag: A data
structure for overlapping hierarchies“. In: Digital documents: Systems and
principles. Springer, 2000, pages 139–160 (cited on page 47).

[SI13] Jared Suttles and Nancy Ide. „Distant supervision for emotion classifica-
tion with discrete binary values“. In: Computational Linguistics and Intelli-
gent Text Processing. Springer, 2013, pages 121–136 (cited on page 28).

[SJN05] Rion Snow, Daniel Jurafsky, and Andrew Y Ng. „Learning Syntactic
Patterns for Automatic Hypernym Discovery“. In: Advances in Neural
Information Processing Systems. 2005, pages 1297–1304 (cited on page 27).

94

[SM10] Charles Sutton and Andrew McCallum. „An introduction to condi-
tional random fields“. In: arXiv preprint arXiv:1011.4088 (2010) (cited
on pages 12, 16, 20–26, 63).

[Sur+12] Mihai Surdeanu et al. „Multi-instance multi-label learning for relation
extraction“. In: Proceedings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computational Natural Language
Learning. Association for Computational Linguistics. 2012, pages 455–465
(cited on page 27).

[TSN12] Shingo Takamatsu, Issei Sato, and Hiroshi Nakagawa. „Reducing wrong
labels in distant supervision for relation extraction“. In: Proceedings of
the 50th Annual Meeting of the Association for Computational Linguistics:
Long Papers-Volume 1. Association for Computational Linguistics. 2012,
pages 721–729 (cited on page 27).

[Tsu+08] Yuta Tsuboi et al. „Training conditional random fields using incomplete
annotations“. In: Proceedings of the 22nd International Conference on Compu-
tational Linguistics-Volume 1. Association for Computational Linguistics.
2008, pages 897–904 (cited on pages 2, 28–30).

[TT07] Gerald Teschl and Susanne Teschl. Mathematik für Informatiker: Band 2:
Analysis und Statistik. Springer-Verlag, 2007 (cited on page 9).

[Wu+14] Jian Wu et al. „CiteSeerX: AI in a Digital Library Search Engine.“ In:
AAAI. 2014, pages 2930–2937 (cited on pages 38, 40, 66, 80, 81).

[Xu+13] Wei Xu et al. „Filling Knowledge Base Gaps for Distant Supervision of
Relation Extraction.“ In: ACL (2). 2013, pages 665–670 (cited on page 27).

95

	List of Abbreviations
	1 Introduction
	2 Related Work
	3 Conditional Random Fields (CRFs)
	3.1 Foundations
	3.1.1 Probability Theory
	3.1.2 Probabilistic Graphical Models

	3.2 Encoding of CRFs
	3.3 Inference of CRFs
	3.4 Learning of CRFs

	4 Distant Supervision
	4.1 Overview
	4.2 Distant Supervision and CRFs
	4.2.1 Marginalization
	4.2.2 Generalized Expectation (GE)

	5 Author Extraction
	5.1 Preprocessing
	5.2 Generating Training Sets with Distant Supervision
	5.2.1 Knowledge Base Creation
	5.2.2 Author Name Matching

	5.3 Building GE Constraints
	5.4 Learning CRFs
	5.4.1 Graph Construction
	5.4.2 Model Parameters
	5.4.3 Feature Engineering

	6 Implementation
	6.1 Research Paper Preprocessing
	6.2 Generating Training Sets using Distant Supervision
	6.2.1 Knowledge Base Creation
	6.2.2 Author Name Matching

	6.3 Building GE Constraints
	6.4 Learning CRFs
	6.4.1 Graph Construction
	6.4.2 Model Parameters
	6.4.3 Feature Engineering

	7 Evaluation
	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work

	Appendices
	A Author Extraction Example
	A.1 Factor Product
	A.2 Gibbs Distribution
	A.2.1 Exemplary Calculation
	A.2.2 Full Distribution

	A.3 Conditional Random Fields
	A.3.1 Calculation of Factor With DX
	A.3.2 Exemplary Calculation

	A.4 Linear-Chain CRFs
	A.4.1 Additional Factors
	A.4.2 Additional Energy Functions
	A.4.3 Feature Functions
	A.4.4 Exemplary Calculation

	A.5 Log-Likelihood Function
	A.6 Distantly Supervised Training Sets
	A.6.1 Author Name Matching
	A.6.2 GE Constraints

	A.7 Feature Engineering

	B Evaluation
	B.1 Accuracy vs. F1 Score
	B.2 Configuration
	B.3 Feature Engineering
	B.4 Detailed Results
	B.5 Scalability

	Subject Index
	Acknowledgments
	References

