Sie sind hier

Web Information Retrieval

Information Retrieval (IR) is dealing with the storage, representation and management of information items. In a classical setting the information items correspond to text documents. With the advent of the World Wide Web, the methods of IR have been transferred to retrieval on the web. This poses different challenges and has spawned the area of Web Retrieval.

The lecture will give an introduction in established retrieval models for text based documents, models that exploit the graph structure of the WWW, the topic of evaluating the performance of retrieval systems and related tasks like classification and clustering of web documents.

Web Information Retrieval (6 ECTS-Credits) is a lecture given in English that

  • is a mandatory course for master students of Web Science
  • can be taken as an elective course by bachelor and master students of Informatik and Computervisualistik, and by master students of Wirtschaftsinformatik and Information Management


  • The lectures will start April 17, 2017, 18:00.


Slides and additional material will be provided along with the progress of the lecture. 

Lecture Topics

  1. Organization 
  2. Introduction
  3. Preprocessing 
  4. Evaluation 
  5. Boolean Model 
  6. Vector Space Model
  7. Probabilistic Language Model 
  8. Web Search Characteristics  
  9. Web Crawling 
  10. Authority Ranking - PageRank 
  11. User interfaces, Visualizations, Eyetracking 
  12. Geographic Retrieval 
  13. Multimedia Retrieval 

It is highly recommended that you follow a textbook while taking the lecture. The textbooks are probably able to address most question you might have about the content of the lecture:

  • Introduction to Information Retrieval. Manning, Raghavan, Schütze, Cambridge University Press, 2008.
    Free, electronic versions available at
  • Web Data Mining. Liu. Springer, 2007.
  • Modern Information Retrieval. Baeza-Yates, Ribeiro-Neto, ACM Press, 2012.


In order to obtain ECTS-Credits (6 ECTS-Credits) you need to both gain admission to the exam and you need to pass the exam. The exam is passed if you obtain a score of at least 50% in it.

Only students who have gained admission are allowed to participate in the exam. Admission is reached by obtaining a total score of at least 50% over all excercise assignments. Admissions from previous semesters are not recognized, with the only exception that you failed the exam in SS 2016 and are thus required to take it again. Nevertheless, participation in the lecture and exercise is strongly recommended by us.



Dr. Chandan Kumar


René Pickhardt