1) Instances, Variants and Substitutions
 1. Suppose Θ_1 and Θ_2 are substitutions and there exist substitutions σ_1 and σ_2, such that $\Theta_1 = \Theta_2 \sigma_1$ and $\Theta_2 = \Theta_1 \sigma_2$. Show that there exists a variable-pure substitution γ, such that $\Theta_1 = \Theta_2 \gamma$.

 2. Which of the following clauses are Instances or Variants of each other?
 1. $p(x, y, z) :- q(x, y), r(f(z))$
 2. $p(x, b, f(z)) :- q(x, b), r(f(f(z)))$
 3. $p(v, w, f(z)) :- q(v, b), r(f(f(z)))$
 4. $p(z, w, v) :- q(z, w), r(f(v))$
 5. $p(f(x), y, f(z)) :- q(f(x), y), r(f(f(z)))$
 6. $p(f(x), y, z) :- q(f(x), y), r(f(z))$

2) The following Lemma shows that we only need to deal with Herbrand interpretations in order to find a model for any logic program:

 Let C be a set of clauses and Σ be any signature containing all symbols used in C. The grounding of C with respect to Σ, denoted C^* is the set of all ground instances of the signature Σ of clauses in C. Let I be a Herbrand interpretation and C be a set of clauses.

 Prove that $I \models C$ if and only if $I \models C^*$.

3) Program Completion
 1. Let the definition of a predicate symbol p be

 $p(y) :- q(y), \neg r(a,y)$.
 $p(f(z)) :- \neg q(z)$.
 $p(b)$.

 Give a completion of p.

 2. Let P be a normal program and $\text{comp}(P)$ it's completion. Prove that P is a logical consequence of $\text{comp}(P)$. Hint: P is a logical consequence of $\text{comp}(P)$ if $I \models \text{comp}(P) \rightarrow I \models P$