Advanced Data Modeling

Steffen Staab
with
Simon Schenk
Organizational Issues

Start of Exercise: Tuesday 15.04.08, 8.15 hrs. Room

Lecture INSS02 is Part of the „Schwerpunkt“ Data & Knowledge Engineering in the Master’s Programme of Computer Science

Also eligible as Wahl- / Wahlpflicht in the Bachelor/Master
Examinations

Admittance to examination:

Present three times in the exercises (Übungen)

Exam:

Oral exam.

Contact the secretary Ms Werger end of June.
Structure of the lecture

- Relational data model;
- Deductive data model;
- Recursive definitions and their semantics;
- Query answering;
- Integrity constraints;
- Complex values;
- Object-oriented and object-relational data model;
- Simple deductive object-oriented data model;
- Unpredictable.
Deductive Databases

- evolved during the 1980s, based on the ideas developed in relational databases and logic programming.

- developed with the aim of increasing the expressive power of relational query languages, and in particular in connection with the inability of the latter to express recursive queries.
Query languages

- navigational (early DBMS);
- declarative (relational DBMS).
Why logics?

Logic tried to solve problems similar to those arising in foundations of databases:

- how to formalize the application world (language);

- How to express its properties (semantics, model theory);

- How to reason about these properties (proof theory).
Why logics?

Logic can handle in a **uniform framework**
- recursive definitions;
- integrity constraint;
- deduction, induction and abduction;
- Models for complex values . . .
Informal overview of deductive databases

- Extensionally defined relations.
- Intentionally defined relations.
- Integrity constraints.
- Recursion.
- Complex values.
Extensionally defined relations

Extensional definition:
by explicit enumeration of all tuples in the relation.

("Maier", "Mozartstrasse", 678);

…

("Schmidt", "Raiffeisenstrasse", 857);

…
Extensionally defined relation

In deductive databases we use the language of first-order logic. and represent this relation by a set of facts:

```
entry("Maier", "Mozartstrasse", 678);
...
entry("Schmidt", "Raiffeisenstrasse", 857);
...
```
The **extensional database** defines relations by sets of facts, for example

hasHighestDegree("Maier", BSc);
hasHighestDegree("Schmidt", MSc);
...
higherDegree(MSc, BSc);
...

Analogue of **tables** in relational databases.
Suppose we want to define a relation \texttt{personWithHigherDegree} among persons:

Person A has higher degree than person B if the highest degree of A is higher than the highest degree of B.
Intensionally defined relations. Rules

Extensional definition

personWithHigherDegree("Schmidt","Maier").
personWithHigherDegree("Maier","Kunz").
...

is dangerous

(too large, may become inconsistent after updates).
For each pair of people A, B, A has higher degree than B if the highest degree of A is DA and the highest degree of B is DB and DA is a higher degree than DB.
Clause (rule)

personWithHigherDegree(\(A, B\)) := % head of the clause

\(\text{hasHighestDegree}(A, \text{DA}),\) % body
\(\text{hasHighestDegree}(B, \text{DB}),\) % of the
\(\text{higherDegree}(\text{DA}, \text{DB}).\) % clause
SELECT
 D1.person, D2.person
FROM
 hasHighestDegree D1,
 hasHighestDegree D2,
 higherDegree
WHERE
 D1.degree = higherDegree.higher AND
 D2.degree = higherDegree.lower
The relation `personWithHigherDegree` holds between objects \(A, B\) if

- the relation `hasHighestDegree` holds between objects \(A, DA\) and
- the relation `asHighestDegree` holds between objects \(B, DB\) and
- the relation `higherDegree` holds between objects \(RA, RB\).
Variables

For all objects A, B, DA, DB
the relation personWithHigherDegree holds between objects A, B
if
the relation hasHighestDegree holds between objects A, DA
and
the relation asHighestDegree holds between objects B, DB
and
the relation higherDegree holds between objects RA, RB.
subordinate(O, president) :- officer(O).

Here O is a variable, while president is a constant.

How to say this syntactically?

- Different conventions:
 - Possibility 1: All variables are explicitly quantified
 - Possibility 2: Variables are implicitly quantified
 (universally or existentially – needs to be agreed by convention)
 Sets of variables and constants are defined as such
Disjunction

How to express *every human is either a woman or a man*?

\[
\text{human}(A) : - \text{man}(A).
\]

\[
\text{human}(A) : - \text{woman}(A).
\]
Negation

How to express that every doctor has the same qualification as Doctor No, with the exception of Doctor No himself.

\[
\text{sameAs}(A,A) :- \text{Object}(A).
\]

\[
\text{sameQualification}(A,B) :-
\begin{align*}
&\text{hasHighestDegree}(A, D), \\
&\text{hasHighestDegree}(B, D), \\
&\text{notSameAs}(A,B).
\end{align*}
\]

\[
\text{hasHighestDegree}(\text{DrNo}, \text{PhD}).
\]
Use negation:

\[
\text{sameQualification}(A, B) :- \\
\text{hasHighestDegree}(A, D), \\
\text{hasHighestDegree}(B, D), \\
\text{not} \text{ SameAs}(A, B).
\]

Negation is handled using the closed world assumption.
Goals

likes(x, y), not likes(y, x).

sameQualification(DrNo, y).