Advanced Data Modeling

Steffen Staab

with

Simon Schenk
Overview

- First-order logic. Syntax and semantics.
- Herbrand interpretations;
- Clauses and goals;
- Datalog.
First-order signature Σ consists of
- con — the set of constants of Σ;
- fun — the set of function symbols of Σ;
- rel — the set of relation symbols of Σ.
Terms

Term of Σ with variables in X:

1. Constant $c \in con$;
2. Variable $v \in X$;
3. If $f \in fun$ is a function symbol of arity n and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.

- A term is ground if it has no variables
- $\text{var}(t)$ — the set of variables of t
Abstract and concrete notation

Abstract notation:
- a, b, c, d, e for constants;
- x, y, z, u, v, w for variables;
- f, g, h for function symbols;
- p, q for relation symbols,
Example: $f(x, g(y))$.

Concrete notation: teletype font for everything.
Variable names start with upper-case letters.
Example: likes(john, Anybody).
Formulas

- Atomic formulas, or atoms $p(t_1, \ldots, t_n)$.
- $(A_1 \land \ldots \land A_n)$ and $(A_1 \lor \ldots \lor A_n)$
- $(A \rightarrow B)$ and $(A \leftrightarrow B)$
- $\neg A$
- $\forall v A$ and $\exists v A$
Substitutions

- Substitution $\theta :$ is any mapping from the set V of variables to the set of terms such that there is only a finite number of variables $v \in V$ with $\theta(v) \neq v$.
- Domain $\text{dom}(\theta)$, range $\text{ran}(\theta)$ and variable range $\text{vran}(\theta)$:
 - $\text{dom}(\theta) = \{ v \mid v \neq \theta(v) \}$,
 - $\text{ran}(\theta) = \{ t \mid \exists v \in \text{dom}(\theta)(\theta(v) = t) \}$,
 - $\text{vran}(\theta) = \text{var}(\text{ran}(\theta))$.
- Notation: $\{ x_1 \mapsto t_1, \ldots, x_n \mapsto t_n \}$
- empty substitution $\{\}$
Application of substitution θ to a term t:

- $x\theta = \theta(x)$
- $c\theta = c$
- $f(t_1, \ldots, t_n)\theta = f(t_1\theta, \ldots, t_n\theta)$
A Herbrand interpretation of a signature \sum is any set of ground atoms of this signature.
Truth in Herbrand Interpretations

1. If A is atomic, then \(I \models A \) if \(A \in I \)
2. \(I \models B_1 \land \ldots \land B_n \) if \(I \models B_i \) for all \(i \)
3. \(I \models B_1 \lor \ldots \lor B_n \) if \(I \models B_i \) for some \(i \)
4. \(I \models B_1 \rightarrow B_2 \) if either \(I \models B_2 \) or \(I \not\models B_1 \)
5. \(I \models \neg B \) if \(I \not\models B \)
6. \(I \models \forall x B \) if \(I \models B\{x \mapsto t\} \) for all ground terms \(t \) of the signature \(\Sigma \)
7. \(I \models \exists x B \) if \(I \models B\{x \mapsto t\} \) for some ground term \(t \) of the signature \(\Sigma \)
Literals

- Literal is either an atom or the negation \(\neg A \) of an atom \(A \).
- Positive literal: atom
- Negative literal: negation of an atom
- Complimentary literals: \(A \) and \(\neg A \)
- Notation: L
Clause: (or normal clause) formula $L_1 \land \ldots \land L_n \rightarrow A$, where

- $n \geq 0$, each L_i is a literal and A is an atom.

- Notation: $A :- L_1 \land \ldots \land L_n$ or $A :- L_1, \ldots, L_n$
- Head: the atom A.
- Body: The conjunction $L_1 \land \ldots \land L_n$
- Definite clause: all L_i are positive
- Fact: clause with empty body
<table>
<thead>
<tr>
<th>Clause</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>lives(Person, sweden) :- sells(Person, wine, Shop), not open(Shop,saturday)</td>
<td>normal</td>
</tr>
<tr>
<td>spy(Person) :- russian(Person)</td>
<td>definite</td>
</tr>
<tr>
<td>spy(bond)</td>
<td>fact</td>
</tr>
</tbody>
</table>
Goal

- Goal (also normal goal) is any conjunction of literals
 \(L_1 \land \ldots \land L_n \)
- Definite goal: all \(L_i \) are positive
- Empty goal \(\Box \): when \(n = 0 \)