Advanced Data Modeling

5: Semantics

Steffen Staab
with
Simon Schenk
Overview

- Logic as query language.
- Grounding.
- Minimal Herbrand models.
- Completion.
Logic as query language

Given:
- first-order formula $A[x_1, \ldots, x_n]$
- Herbrand interpretation I

This first-order formula can be considered as a definition of a relation R_A on T^n_Σ as follows:

$$(t_1, \ldots, t_n) \in R_A := I \models A[t_1, \ldots, t_n]$$
Clauses as definitions

We say that a clause

\[p(t_1, \ldots, t_m) :- L_1, \ldots, L_n \]

defines the relation symbol \(p \).

Let \(C \) be a set of clauses and \(p \) be a relation symbol. We call the definition of \(p \) in \(C \) the set of all clauses in \(C \) that define \(p \).
Principles of semantics

- A deductive database is a **set of clauses**.
- This set of clauses is regarded as a **collection of definitions** of relations.
- The **semantics** defines the meaning of this definitions by associating with them an **interpretation**, or a class of interpretations.
- **Query answering** is based on the semantics.
Two key assumptions

- the unique name assumption: each name denotes a unique object.

- the closed world assumption:
 - a negative statement $\neg A$ holds if the corresponding positive one A does not hold.
Minimal Herbrand Models

Let I be a Herbrand model of a set of formulas S.

We call I a minimal Herbrand model of S if it is minimal w.r.t. the subset relation, i.e. for every Herbrand model I' of S of the same signature we have $I' \subseteq I$.

I is called the least Herbrand model of S if for every Herbrand model I' of S of the same signature we have $I \subseteq I'$.
Does every set of formulas S have a least Herbrand model?
Let E, E' be a pair of terms or formulas.

- E' is an **instance** of E, denoted $E \prec E'$, if there exists a substitution θ such that $E\theta = E'$.

- **ground instance**: instance that is ground,

- E' is a **variant** of E if E' is an instance of E and E is an instance of E'.
Examples

- \(P(x,a) \) is instance of \(P(x,y) \) because of \(P(x,y)[y|b] \)

- \(P(b,a) \) is a ground instance

- \(P(x,y) \) and \(P(u,v) \) are variants of each other, because of
 - \([x|u, y|v] \) and
 - \([u|x, v|y] \)
Grounding

Let C be a set of clauses and Σ be any signature containing all symbols used in C. The **grounding of C w.r.t. Σ**, denoted C^*, is the set of all ground instances of the signature Σ of clauses in C.

Lemma. Let I be a Herbrand interpretation and C be a set of clauses. Then $I \models C$ if and only if $I \models C^*$.
Proof
Logic with equality

- Additional atomic formulas $s = t$, where s, t are terms.

- Abbreviation: $x \neq y := \neg(x = y)$.

- Unlike other relations, the semantics of $s = t$ is predefined in all Herbrand interpretations: $I \models s = t$ if s coincides with t.
Example valid formulas

\[f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n) \rightarrow x_1 = y_1 \land \ldots \land x_n = y_n \]
\[f(x_1, \ldots, x_n) \neq g(y_1, \ldots, y_n) \]
\[f(x_1, \ldots, x_n) \neq c \]
\[d \neq c \]
\[A[t] \leftrightarrow \forall x (x = t \rightarrow A[x]) \]
Semantics of definitions

Consider a definition of a relation \(r \)

\[
r(t_1) : -G_1 \\
\ldots \\
r(t_m) : -G_m
\]

What is the meaning of this definition?
Completion. Step 1.

Replace every clause by an equivalent one such that the arguments of r are x_1, \ldots, x_n:

Given:
$r(t_1, \ldots, t_n) :\neg G$

Replace by:
$r(x_1, \ldots, x_n) :\neg x_1 = t_1 \land \ldots \land x_n = t_n \land G$
Completion. Step 2.

If there are variables y_1, \ldots, y_k occurring in a body but not in the head, apply \exists to these variables, i.e.,

Given
$r(x_1, \ldots, x_n) :- G$

Modify to
$r(x_1, \ldots, x_n) :- \exists y_1 \ldots \exists y_k G$
Completion. Step 3.

If there are several definitions, replace them by one

Given

\[r(x_1, \ldots, x_n) :- G_1 \]

\[\ldots \]

\[r(x_1, \ldots, x_n) :- G_m \]

Replace by

\[r(x_1, \ldots, x_n) :- G_1 \lor \ldots \lor G_m \]
Completion. Step 4.

Replace :-) by \leftrightarrow:

Given
$$r(x_1, \ldots, x_n) :- G_1 \lor \ldots \lor G_m$$

Replace by
$$r(x_1, \ldots, x_n) \leftrightarrow G_1 \lor \ldots \lor G_m$$

The formula
$$r(x_1, \ldots, x_n) \leftrightarrow G_1 \lor \ldots \lor G_m$$

is called the **completed definition** of the original set of clauses.
Properties

- All steps preserve Herbrand models, except for the last one.

- Gives a unique semantics to non-recursive definitions;

- On non-recursive definitions is equivalent to first-order logic.