Soundness of SLD-Resolution

procedural semantics
Properties of Substitution

Propositions:
Let θ, ρ, γ be substitutions, E an expression.
1. $\theta\varepsilon = \varepsilon\theta = \theta$ (Identity)
2. $(E\theta)\rho = E(\theta\rho)$
3. $(\theta\rho)\gamma = \theta(\rho\gamma)$ (Associativity)

Proof:
1. Follows from definition of ε
2. prove proposition for $E=x$
3. prove $E(\theta\rho)\gamma = E\theta(\rho\gamma)$ for $E=x$ and 2.

Example
Definition:
Let S be a finite set of simple expressions. A Substitution θ is called a *unifier* for S, if $S\theta$ is a singleton. A unifier θ is called a *most general unifier (mgu)* for S if, for each unifier ρ of S there exists a substitution γ such that $\rho=\theta\gamma$.

Example

Note: If there exist two mgu's then they are variants.
Disagreement Set

Definition:
Let S be a finite set of simple expressions. Locate the leftmost symbol position at which not all expressions in S have the same symbol and extract from each expression in S the subexpression beginning at that symbol position. The set of all such subexpressions is the *disagreement set*.

Example:
Let S={p(f(x),h(y),a), p(f(x),z,a), p(f(x),h(y),b)}, then the disagreement set is {h(y),z}
Unification Algorithm

put \(k := 0 \) and \(\rho_0 := \varepsilon \)

If \(S_{\rho_k} \) is a singleton, Then return(\(\rho_k \))
 Else find the disagreement set \(D_k \) of \(S_{\rho_k} \)

If there exist a variable \(v \) and a term \(t \) in \(D_k \) such that \(v \) does not occur in \(t \),
 // non-deterministic choice
 Then put \(\rho_{k+1} := \rho_k[v/t] \), \(k++ \), goto 2
 Else exit // \(S \) is not unifiable
Example

\[\rho_0 = \varepsilon, \ k = 1 \]
\[S_{\rho_0} = \{\text{even}(0), \text{even}(y)\} \]
\[D_0 = \{0, y\} \]
choose variable \(y \), term 0
put \(\rho_1 := \varepsilon \{y/0\}, \ k = 1 \)

\[S_{\rho_1} = \{\text{even}(0)\} \]

return.
Theorem:
Let S be a finite set of simple expressions. If S is unifiable, then the unification algorithm terminates and gives a mgu for s. If S is not unifiable, then the unification algorithm terminates and reports this fact.

Proof Sketch:
Assume θ is a unifier for S. Show that until termination for all k:

$$\theta = \rho_k \gamma_k$$
SLD-Resolution

SLD: SL-resolution for definite clauses
SL: Linear resolution with selection function
Definition:

Let G be $\leftarrow A_1, \ldots, A_m, \ldots, A_k$
and C be $A \leftarrow B_1, \ldots, B_q$.
Then G' is derived from G and C using mgu θ, if:

a. A_m is an Atom, called the selected atom, in G
b. θ is an mgu of A_m and A.
c. G' is the goal $\leftarrow (A_1, \ldots, B_1, \ldots, B_q, \ldots, A_k)\theta$.

In resolution terminology G' is called a resolvent of G and C.

Definition:
Let P be a definite program and G_0 a definite goal. An *SLD-Derivation* of $P \cup \{G_0\}$ consists of a (finite or infinite) sequence G_0, G_1, G_2, \ldots of goals, a sequence C_1, C_2, \ldots of variants of program clauses of P and a sequence $\theta_1, \theta_2, \ldots$ of mgu's such that each G_{i+1} is derived from G_i and C_{i+1} using θ_{i+1}.

standardising apart the variables:
subscribe all variables in C_i with i.
Otherwise $\leftarrow p(x).$ could not be unified with $p(f(x)) \leftarrow$.
each program clause variant C_1, C_2, \ldots is called an *input clause* of the derivation
SLD-Derivation visualised

\[(\leftarrow A_1, \ldots, B_1, \ldots, B_q, \ldots, A_k) \theta_1 \]

\[\leftarrow A_1, \ldots, A_m, \ldots, A_k \]

\[(\leftarrow A_1 \theta_1, \ldots, B_1 \theta_1, \ldots, D_1, \ldots, D_l, \ldots, B_q \theta_1, \ldots, A_k \theta_1) \theta_2 \]

\[G_0 \rightarrow G_1 \rightarrow G_2 \rightarrow G_3 \rightarrow \cdots \rightarrow G_{n-1} \rightarrow G_n \]

\[C_1, \theta_1 \]

\[C_2, \theta_2 \]

\[C_3, \theta_3 \]

\[C_n, \theta_n \]

\[A \leftarrow B_1, \ldots, B_q. \]

\[\theta_1 = \text{mgu}(A, A_m). \]

\[B \leftarrow D_1, \ldots, D_l. \]

\[\theta_2 = \text{mgu}(B, B_0 \theta_1). \]
Example – Restricted SLD-Refutation

Program P
1 Q(x) :- R(g(x)).
2 R(y).

Goal: Q(f(z)).

Computed Answer
{x/f(z), y/g(f(z))} restricted to variables of Q(f(z)) results in ε
Example – Unrestricted SLD-Refutation

Program P
1 Q(x) :- R(g(x)).
2 R(y).

Goal: Q(f(z)).

Correct Answer:
{x/f(a), z/a, y/g(f(z))}
restricted to variables of Q(f(z)) results in {z/a}
Definition:

An *SLD-refutation* of $P \cup \{G\}$ is a finite SLD-derivation of $P \cup \{G\}$, which has \Box as the last goal in the derivation. If $G_n=\Box$, we say the refutation has *length n*.

SLD-derivations can be *finite* or *infinite*.
A finite SLD-derivation can be *successful* or *fail*.
An SLD-derivation is successful, if it ends in \Box.
An SLD-derivation is *failed*, if it ends in a non-empty goal, which cannot be unified with the head of a program clause.
Definition:

Let P be a definite program. The success set of P is the set of all $A \in B_P$ such that $P \cup \{\leftarrow A\}$ has an SLD-refutation.

Procedural Counterpart of the Least Herbrand Model!
Definition:
Let P be a definite program and G a definite goal. Let $\theta_1 \ldots \theta_n$ be the sequence of mgu's used in an SLD-refutation of $P \cup \{G\}$.

A *computed answer* θ for $P \cup \{G\}$ is the substitution obtained by restricting the composition $\theta_1 \ldots \theta_n$ to the variables of G.
Example: P=Slowsort

\[\text{goal: } \quad \leftarrow \text{sort(17.22.6.5.nil,y)} \]

\[\text{computed answer: } \quad \{y/5.6.17.22.nil\} \]

\[\begin{align*}
\text{sort}(x,y) & \leftarrow \text{sorted}(y), \text{perm}(x,y) \\
\text{sorted}(\text{nil}) & \leftarrow \\
\text{sorted}(x.\text{nil}) & \leftarrow \\
\text{sorted}(x.y.z) & \leftarrow x \leq y, \text{sorted}(y.z) \\
\text{perm}(\text{nil},\text{nil}) & \leftarrow \\
\text{perm}(x.y,u.v) & \leftarrow \text{delete}(u,x.y,z), \text{perm}(z,v) \\
\text{delete}(x,x.y,y) & \leftarrow \\
\text{delete}(x,y.z,y.w) & \leftarrow \text{delete}(x,z,w) \\
0 \leq x & \leftarrow \\
f(x) \leq f(y) & \leftarrow x \leq y.
\end{align*} \]
Theorem
Let \(P \) be a definite program and \(G \) a definite goal. Then every computed answer for \(P \cup \{G\} \) is a correct answer for \(P \cup \{G\} \).

Proof
Let \(G \) be the goal \(A_1, \ldots, A_k \) and \(\theta_1 \cdots \theta_n \) the sequence of mgu's in a refutation of \(P \cup \{G\} \).
Show that \(\forall ((A_1, \ldots, A_k) \theta_1 \cdots \theta_n) \) is a logical consequence of \(P \) using induction (starting at the last goal) over the length of the derivation.
Corollary
The success set of a definite program is contained in its least Herbrand model.

Proof
Let the program be P, let $A \in B_P$ and suppose $P \cup \{ \leftarrow A \}$ has a refutation. By the theorem on the prior slide A is a logical consequence of P. Thus A is in the least Herbrand model of P.
strengthen this corollary

If $A \in B_P$ and $P \cup \{ \leftarrow A \}$ has a refutation of length n, then $A \in T_P \uparrow n$.

Notation

$[A] = \{ A' \in B_P: A' = A\theta \text{ for some substitution } \theta \}$