Relational Data Model
Overview

- Relational data model;
- Tuples and relations;
- Schemas and instances;
- Named vs. unnamed perspective;
- Relational algebra;
<table>
<thead>
<tr>
<th>Player</th>
<th>Birth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andy</td>
<td>1980</td>
</tr>
<tr>
<td>Wim</td>
<td>1975</td>
</tr>
<tr>
<td>Liam</td>
<td>1985</td>
</tr>
<tr>
<td>Mike</td>
<td>1988</td>
</tr>
<tr>
<td>Bert</td>
<td>1971</td>
</tr>
</tbody>
</table>
Observations

- The **rows** of the table contain pairs occurring in the relation **player**.
- There are two **columns**, labeled respectively by “name” and “birth year”.
- The **values** in each column belong to different **domains** of possible values.
How to specify a relation

1. specifying the names of the columns (also called fields or attributes);

2. specifying a domain of possible values for each column;

3. enumerate all tuples in the relation.

(1)–(2) refer to the schema of this relation, while (3) to an instance.
Domains and attributes

- A set of **domains** \(\mathcal{D}_1, \mathcal{D}_2 \) (sets of values);
- A set of corresponding **domain names** \(d_1, d_2, \ldots \);
- A set of **attributes** \(a_1, a_2, \ldots \).
Relation Schema and Instances

- **Tuple:** any finite sequence \((v_1, \ldots, v_n)\).
- \(n\) is the **arity** of this tuple.

- **Relation schema:**

 \[r(a_1:d_1, \ldots, a_n:d_n) \]

 where \(n \geq 0\), \(r\) is a relation name, \(a_1, \ldots, a_n\) are distinct attributes, \(d_1, \ldots, d_n\) are domain names.

- **Relation instance:**
 finite set of tuples \((v_1, \ldots, v_n)\) of arity \(n\) such that \(v_i \in D_i\) for all \(i\).
1. The attributes in each column must be unique.

2. A relation is a set. Therefore, when we represent a relation by a table, the order of rows in the table does not matter.

Let us add to this:

3. The order of attributes does not matter.
New notation for tuples

A tuple is a set of pairs \(\{(a_1, v_1), \ldots, (a_n, v_n)\} \) denoted by \(\{a_1=v_1, \ldots, a_n=v_n\} \).

Let \(d_1, \ldots, d_n \) be domain names and \(D_1, \ldots, D_n \) be the corresponding domains.

The tuple \textbf{conforms} to a relation schema \(r(a_1:d_1, \ldots, a_n:d_n) \) if \(v_i \in D_i \) for all \(i \).
Relational data are structured

Note that in the relational data model tuples stored in a table are **structured**:

- all tuples conform to the same relation schema;
- the values in the same column belong to the same domain.

Untyped perspective: there is a single domain, so the second condition can be dropped.
Typed or untyped?

Consider the relation admire:

<table>
<thead>
<tr>
<th>admirer</th>
<th>admired</th>
</tr>
</thead>
<tbody>
<tr>
<td>wim</td>
<td>andy</td>
</tr>
<tr>
<td>mike</td>
<td>wim</td>
</tr>
<tr>
<td>liam</td>
<td>andy</td>
</tr>
<tr>
<td>liam</td>
<td>arsenal</td>
</tr>
</tbody>
</table>

- Relational database instance conforming to a relational database schema S:
 - a mapping \(l \) from the relation names of S to relation instances such that
 - for every relation schema \(r(a_1:d_1, \ldots, a_n:d_n) \) in S
 the relation instance \(l(r) \) conforms to this relation schema.
• No attributes

• a tuple is simply a **sequence** \((v_1, \ldots, v_n)\) of values.

• The components of tuples can therefore be identified by their **position** in the tuple.
• Introduce a collection of attributes #1,#2, …,

• identify tuple \((v_1, \ldots , v_n)\) with the tuple
 \[
 \{ #1 = v_1, \ldots ,#n = v_n \}.
 \]

• Likewise, identify relation schema \(r(d_1, \ldots , d_n)\) with
 \(r(#1:d_1, \ldots ,#n:d_n).\)
1. Can **define** new relations from existing ones;
2. Uses a collection of **operations** on relations to do so.
\{ (v_{11}, \ldots, v_{1n}), \\
\ldots \\
(v_{k1}, \ldots, v_{kn}) \}
Union

\[R_1 \cup R_2 = \{(c_1, \ldots, c_k) \mid (c_1, \ldots, c_k) \in R_1 \text{ or } (c_1, \ldots, c_k) \in R_2\} \]
Set difference

\[R_1 - R_2 = \{ (c_1, \ldots, c_k) \mid (c_1, \ldots, c_k) \in R_1 \text{ and } (c_1, \ldots, c_k) \not\in R_2 \} \]
Cartesian product

\[R_1 \times R_2 = \{(c_1, \ldots, c_k, d_1, \ldots, d_m) \mid (c_1, \ldots, c_k) \in R_1 \text{ and } (d_1, \ldots, d_m) \in R_2 \}. \]
Let now R be a relation of arity k and i_1, \ldots, i_m be numbers in \{1, \ldots, k\}.

$$\pi_{i_1, \ldots, i_m}(R) = \{(c_{i_1}, \ldots, c_{i_m}) \mid (c_1, \ldots, c_k) \in R\}.$$

We say that $\pi_{i_1, \ldots, i_m}(R)$ is obtained from R by projection (on arguments i_1, \ldots, i_m).
Assume **formulas on domains** with “variables” #1, #2,

For example, #1 = #2.

\[\sigma_F(R) = \{(c_1, \ldots, c_k) \mid (c_1, \ldots, c_k) \in R \text{ and } F \text{ holds on } (c_1, \ldots, c_k)\} .\]