Distributed databases

Acknowledgements to A. Kemper and Eickler
Distributed Databases

- Motivation:
 - Former times:
 - Bank with subsidiaries
 - Nowadays:
 - Virtual organization

 + Subsidiaries should work on data of local customers
 + Central site should be able to access all data
Other scenarios

Federation:
- Commercial database systems (DB2…)
- Networked Graphs in RDF/SPARQL

Distribution in the Cloud
- Large scale data processing
- RDF (current diploma thesis)
Terminology

Distributed Database

- Collection of information units, distributed on multiple computers connected with communication net

→ Ceri & Pelagatti (1984)

Cooperation between autonomously working stations for performing global tasks

Loosely integrated databases / Multi-database systems

- Autonomous working
- Autonomous structuring/schema
- No joint administration
Distributed Database system

Station S₁

Kommunikationsnetz

Station S₂

Station S₃
Design of distributed database system

- Global schema
- Fragmentation schema
- Allocation schema

Local schema

Local DBMS

Local DB

Station S_1

...
Fragmentation and Allocation of a Relation

Fragmentation: Fragments contain data with likewise access patterns

Allocation: Fragments are assigned to the stations

- with replication
- without replication
Fragmentation Allocation

Station S_1

Station S_2

Station S_3
Fragmentation

horizontal fragmentation:
Partitioning the relation in disjoint tuple sets

vertical fragmentation:
Summarization of attributes with likewise access patterns

Combined fragmentation: Application of horizontal and vertical fragmentation on one relation
Soundness requirements

- Reconstructable
- Complete
- Disjoint (to some extent)
Example relation Professors

<table>
<thead>
<tr>
<th>PersNr</th>
<th>Name</th>
<th>Rang</th>
<th>Raum</th>
<th>Fakultät</th>
<th>Gehalt</th>
<th>Steuerklasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>2125</td>
<td>Sokrates</td>
<td>C4</td>
<td>226</td>
<td>Philosophie</td>
<td>85000</td>
<td>1</td>
</tr>
<tr>
<td>2126</td>
<td>Russel</td>
<td>C4</td>
<td>232</td>
<td>Philosophie</td>
<td>80000</td>
<td>3</td>
</tr>
<tr>
<td>2127</td>
<td>Kopernikus</td>
<td>C3</td>
<td>310</td>
<td>Physik</td>
<td>65000</td>
<td>5</td>
</tr>
<tr>
<td>2133</td>
<td>Popper</td>
<td>C3</td>
<td>52</td>
<td>Philosophie</td>
<td>68000</td>
<td>1</td>
</tr>
<tr>
<td>2134</td>
<td>Augustinus</td>
<td>C3</td>
<td>309</td>
<td>Theologie</td>
<td>55000</td>
<td>5</td>
</tr>
<tr>
<td>2136</td>
<td>Curie</td>
<td>C4</td>
<td>36</td>
<td>Physik</td>
<td>95000</td>
<td>3</td>
</tr>
<tr>
<td>2137</td>
<td>Kant</td>
<td>C4</td>
<td>7</td>
<td>Philosophie</td>
<td>98000</td>
<td>1</td>
</tr>
</tbody>
</table>
Abstract:

For 2 predicates p_1 and p_2 there are 4 fragments:

$$R1 := \sigma_{p_1 \wedge p_2}(R)$$
$$R2 := \sigma_{p_1 \wedge \neg p_2}(R)$$
$$R3 := \sigma_{\neg p_1 \wedge p_2}(R)$$
$$R4 := \sigma_{\neg p_1 \wedge \neg p_2}(R)$$

n partitioning predicates p_1, \ldots, p_n yield 2^n fragments
Useful grouping of professor according to faculty

3 fragmentation predicates:

\[\rho_1 \equiv \text{Fakultät} = \text{Theologie}' \]
\[\rho_2 \equiv \text{Fakultät} = \text{Physik}' \]
\[\rho_3 \equiv \text{Fakultät} = \text{Philosophie}' \]

\[\text{TheolProfs'} := \sigma_{\rho_1 \land \neg \rho_2 \land \rho_3}(\text{Professoren}) = \sigma_{\rho_1}(\text{Professoren}) \]
\[\text{PhysikProfs'} := \sigma_{\neg \rho_1 \land \rho_2 \land \rho_3}(\text{Professoren}) = \sigma_{\rho_2}(\text{Professoren}) \]
\[\text{PhiloProfs'} := \sigma_{\neg \rho_1 \land \neg \rho_2 \land \rho_3}(\text{Professoren}) = \sigma_{\rho_3}(\text{Professoren}) \]
\[\text{AndereProfs'} := \sigma_{\neg \rho_1 \land \neg \rho_2 \land \neg \rho_3}(\text{Professoren}) \]
Extension of Professors and Lecture

Professoren

<table>
<thead>
<tr>
<th>PersNr</th>
<th>Name</th>
<th>Rang</th>
<th>Raum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2125</td>
<td>Sokrates</td>
<td>C4</td>
<td>226</td>
</tr>
<tr>
<td>2126</td>
<td>Russel</td>
<td>C4</td>
<td>232</td>
</tr>
<tr>
<td>2127</td>
<td>Kopernikus</td>
<td>C3</td>
<td>310</td>
</tr>
<tr>
<td>2133</td>
<td>Popper</td>
<td>C3</td>
<td>52</td>
</tr>
<tr>
<td>2134</td>
<td>Augustinus</td>
<td>C3</td>
<td>309</td>
</tr>
<tr>
<td>2136</td>
<td>Curie</td>
<td>C4</td>
<td>36</td>
</tr>
<tr>
<td>2137</td>
<td>Kant</td>
<td>C4</td>
<td>7</td>
</tr>
</tbody>
</table>

Vorlesungen

<table>
<thead>
<tr>
<th>VorlNr</th>
<th>Titel</th>
<th>SWS</th>
<th>Gelesen Von</th>
</tr>
</thead>
<tbody>
<tr>
<td>5001</td>
<td>Grundzüge</td>
<td>4</td>
<td>2137</td>
</tr>
<tr>
<td>5041</td>
<td>Ethik</td>
<td>4</td>
<td>2125</td>
</tr>
<tr>
<td>5043</td>
<td>Erkenntnistheorie</td>
<td>3</td>
<td>2126</td>
</tr>
<tr>
<td>5049</td>
<td>Mäeutik</td>
<td>2</td>
<td>2125</td>
</tr>
<tr>
<td>4052</td>
<td>Logik</td>
<td>4</td>
<td>2125</td>
</tr>
<tr>
<td>5052</td>
<td>Wissenschaftstheorie</td>
<td>3</td>
<td>2126</td>
</tr>
<tr>
<td>5216</td>
<td>Bioethik</td>
<td>2</td>
<td>2126</td>
</tr>
<tr>
<td>5259</td>
<td>Der Wiener Kreis</td>
<td>2</td>
<td>2133</td>
</tr>
<tr>
<td>5022</td>
<td>Glaube und Wissen</td>
<td>2</td>
<td>2134</td>
</tr>
<tr>
<td>4630</td>
<td>Die 3 Kritiken</td>
<td>4</td>
<td>2137</td>
</tr>
</tbody>
</table>
Example Vorlesungen from the university schema:
Fragmentation into groups with likewise SWS-Zahl

\[2\text{SWSVorls} := \sigma_{\text{sWS}=2}(\text{Vorlesungen}) \]
\[3\text{SWSVorls} := \sigma_{\text{sWS}=3}(\text{Vorlesungen}) \]
\[4\text{SWSVorls} := \sigma_{\text{sWS}=4}(\text{Vorlesungen}) \]

Unsuitable fragmentation for querying
```
select Titel, Name
from Vorlesungen, Professoren
where gelesenVon = PersNr;
```

results in:

$$\Pi_{\text{Titel, Name}}((\text{TheolProfs'} \Join 2\text{SWSVorls}) \cup \text{(TheolProfs'} \Join 3\text{SWSVorls}) \cup ... \cup (\text{Philoprofs'} \Join 4\text{SWSVorls}))$$

Join-Graph for this problem:
Solution: derived fragmentation

TheolProfs' \text{TheolVorls}

PhysikProfs' \text{PhysikVorls}

PhiloProfs' \text{PhiloVorls}

\text{TheolVorls} := \text{Vorlesungen } \Pi_{\text{Titel, Name}} ((\text{TheolProfs'} \Join_{p} \text{TheolVorls}) \cup (\text{PhysikProfs'} \Join_{p} \text{PhysikVorls}) \cup (\text{PhiloProfs'} \Join_{p} \text{PhiloVorls}))

\text{with } p \equiv (\text{PersNr} = \text{gelesenVon})
Abstract representation:
Arbitrary vertical fragmentation does not guarantee reconstructability.

2 possible approaches to ensure reconstructability:

1. Each fragment contains the primary key of the original relation – destroy disjointness.
2. Each tuple of the original relation is assigned a unique surrogate (= artificially generated object identifier), which is part of each vertical fragment of a tuple.
Vertical Fragmentation (Example)

The university administration is interested in:
PersNr, Name, Gehalt (salary) and Steuerklasse (taxation category)

ProfVerw := \(\Pi_{\text{PersNr, Name, Gehalt, Steuerklasse}} \) (Professoren)

Teaching and research relates only to
PersNr, Name, Rang (status), Raum (room) and Fakultät (faculty):

Profs := \(\Pi_{\text{PersNr, Name, Rang, Raum, Fakultät}} \) (Professoren)

Reconsting the original relation Professoren:

Professoren = ProfVerw \(\bowtie \) \(\text{ProfVerw.PersNr} = \text{Profs.PersNr} \) Profs
Combined fragmentation

a) horizontal fragmentation following vertical fragmentation

\[
\begin{array}{c}
R \\
R_{21} \\
R_{22} \\
R_{23}
\end{array}
\begin{array}{c}
R_1 \\
R_2
\end{array}
\]

b) vertical fragmentation following horizontal fragmentation

\[
\begin{array}{c}
R \\
R_1 \\
R_2 \\
R_3
\end{array}
\begin{array}{c}
R_{31} \\
R_{32}
\end{array}
\]
Reconstruction after combined fragmentation

Case a)

\[R = R_1 \cup (R_{21} \cup R_{22} \cup R_{23}) \]

Case b)

\[R = R_1 \cup R_2 \cup (R_{31} \cap \kappa = R_{32} \cap R_{32}) \]
Tree representations of fragmentations (example)
Allocation

Individual fragments can be allocated to multiple nodes
Allocation for our example without replication
⇒ **redundancy-free** allocation

<table>
<thead>
<tr>
<th>Node</th>
<th>Remark</th>
<th>Allocated fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{Verw}</td>
<td>Administration</td>
<td>{ProfVerw}</td>
</tr>
<tr>
<td>S_{Physik}</td>
<td>Dean’s office Physik</td>
<td>{PhysikVorls, PhysikProfs}</td>
</tr>
<tr>
<td>S_{Philo}</td>
<td>Dean’s office Philosophy</td>
<td>{PhiloVorls, PhiloProfs}</td>
</tr>
<tr>
<td>S_{Theol}</td>
<td>Dean’s office Theology</td>
<td>{TheolVorls, TheolProfs}</td>
</tr>
</tbody>
</table>
Transparency in distributed databases

Degree of transparency that a distributed database management system gives to the user for accessing distributed data

Different degrees of transparency:
- Fragmentation transparency
- Allocation transparency
- Local schema transparency
Fragmentation transparency

Example query requiring fragmentation transparency:

```sql
select Titel, Name
from Vorlesungen, Professoren
where gelesenVon = PersNr;
```

Example for change operation requiring fragmentation transparency:

```sql
update Professoren
set Fakultät = 'Theologie'
where Name = 'Sokrates';
```
Example (continued)

Changing the attribute value of *Fakultät*

Transferring the Sokrates-Tuple from fragment *PhiloProf* into fragment *TheolProf* (= deleting from *PhiloProf*, inserting into *TheolProf*)

Updating derived fragmentations of *Vorlesungen* (= Inserting lectures given by Sokrates into *TheolVorls*, deleting his lectures from *PhiloVorls*)
Allocation transparency

User must know fragmentation, but not their "location"

Example query:

```sql
select Gehalt
from ProfVerw
where Name = 'Sokrates';
```
Allocation transparency (continued)

Original relation must remain reconstructable

Example:
Administration wants to know how much C4 professors earn in theology

Due to lack of fragmentation transparency the query must be reformulated:

```
select sum (Gehalt)
from ProfVerw, TheolProfs
where ProfVerw.PersNr = TheolProfs.PersNr and
   Rang = 'C4';
```
Local schema transparency

The user must know the computing node, which is the location of the fragment.

Example query:

```sql
select Name
from TheolProfs at S_{Theol}
where Rang = 'C3';
```
Local schema transparency requires that all nodes use the same data model and query language.

⇒ previous query may also be executed on the analogous computing node S_{Philo}

This is not possible if different DBMS are linked together

Use of different data models at local DBMS are called „Multi-Database-Systems“
Premise: Fragmentation transparency

Task of the query translator: generation of a query execution plan on fragments

Task of the query planner: generation of an efficient query execution plan → depending on the allocation of fragments to different computing nodes
Translation of SQL query to global schema into an equivalent query on fragments requires two steps:

1. Reconstruction of all global relations needed in the query from their fragments. Result is an source algebraic expression

2. Applying the query algebraic expression on the source algebraic expression.
Example

```sql
select Titel
from Vorlesungen, Profs
where gelesenVon = PersNr and
    Rang = 'C4';
```

The resulting algebraic expression is called **canonical query from**:

The resulting algebraic expression is called **canonical query from**:

```
Π_Titel
σ_Rang='C4'
D
gelesenVon=PersNr
```

```
TheolVorls PhiloVorls PhysikVorls TheolProfs PhiloProfs PhysikProfs
```
Algebraic equivalences

For efficient query execution the optimizer uses the following property:

\[(R_1 \cup R_2) \circ (S_1 \cup S_2) =
(R_1 \circ S_1) \cup (R_1 \circ S_2) \cup (R_2 \circ S_1) \cup (R_2 \circ S_2)\]

The generalization to \(n\) horizontal fragments \(R_1, \ldots, R_n\) of \(R\) and \(m\) fragments \(S_1, \ldots, S_m\) of \(S\) results in:

\[(R_1 \cup \ldots \cup R_n) \circ (S_1 \cup \ldots \cup S_m) = \bigcup_{1 \leq i \leq n} \bigcup_{1 \leq j \leq m} (R_i \circ S_j)\]

If: \(S_i = S \bowtie_p R_i\) mit \(S = S_i \cup \ldots \cup S_n\)
Then:
\[R_i \circ S_j = \emptyset \text{ für } i \neq j\]
Algebraic equivalences (continued)

For a derived horizontal fragmentation of S:

$$(R_1 \cup ... \cup R_n) \bowtie_p (S_1 \cup ... \cup S_m) = (R_1 \bowtie_p S_1) \cup (R_2 \bowtie_p S_2) \cup ... \cup (R_n \bowtie_p S_n)$$

For our example:

$$(\text{TheolVorls} \cup \text{PhysikVorls} \cup \text{PhiloVorls}) \bowtie ... (\text{TheolProfs} \cup \text{PhysikProfs} \cup \text{PhiloProfs})$$

To push down selections and projections in the query execution tree the following rules apply:

$$\sigma_p(R_1 \cup R_2) = \sigma_p(R_1) \cup \sigma_p(R_2)$$
$$\Pi_L(R_1 \cup R_2) = \Pi_L(R_1) \cup \Pi_L(R_2)$$
Applying these algebraic rules generates the following query plan:

- \(\Pi_{\text{Titel}} \)
- \(\sigma_{\text{Rang}='C4'} \)
- \(\text{gelesenVon}=\text{PersNr} \)
- \(\bigcup \)

Query executions can be performed locally on nodes \(S_{\text{Theol}}, S_{\text{Physik}} \), and \(S_{\text{Philo}} \). Nodes may work in parallel and transmit local results independently of each other to the node that computes the union.
Example:

```sql
select Name, Gehalt
from Professoren
where Gehalt > 80000;
```

Canonical query plan:
```
\[ \Pi \text{Name, Gehalt} \sigma \text{Gehalt > 80000} \]
```

```
\text{TheolProfs} \cup \text{PhysikProfs} \cup \text{PhiloProfs}
```

```
\text{ProfVerw}
```

```
\text{D}
```

Optimization for vertical fragmentation

For our example:

All required data are contained in ProfVerw ⇒ discard join and union.

Resulting query execution plan:

\[
\begin{align*}
\Pi_{\text{Name, Gehalt}} \\
\sigma_{\text{Gehalt}>80000} \\
\text{ProfVerw}
\end{align*}
\]

Example for query that is hard to optimize:
(Attribute Rang is lacking in ProfVerw)

\[
\begin{align*}
\text{select } \text{Name, Gehalt, Rang} \\
\text{from } \text{Professoren} \\
\text{where } \text{Gehalt > 80000;}
\end{align*}
\]
The natural join of two relations R and S

<table>
<thead>
<tr>
<th>R</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>a₁</td>
<td>b₁</td>
<td>c₁</td>
</tr>
<tr>
<td>a₂</td>
<td>b₂</td>
<td>c₂</td>
</tr>
<tr>
<td>a₃</td>
<td>b₃</td>
<td>c₁</td>
</tr>
<tr>
<td>a₄</td>
<td>b₄</td>
<td>c₂</td>
</tr>
<tr>
<td>a₅</td>
<td>b₅</td>
<td>c₃</td>
</tr>
<tr>
<td>a₆</td>
<td>b₆</td>
<td>c₂</td>
</tr>
<tr>
<td>a₇</td>
<td>b₇</td>
<td>c₆</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>c₁</td>
<td>d₁</td>
<td>e₁</td>
</tr>
<tr>
<td>c₃</td>
<td>d₂</td>
<td>e₂</td>
</tr>
<tr>
<td>c₄</td>
<td>d₃</td>
<td>e₃</td>
</tr>
<tr>
<td>c₅</td>
<td>d₄</td>
<td>e₄</td>
</tr>
<tr>
<td>c₇</td>
<td>d₅</td>
<td>e₅</td>
</tr>
<tr>
<td>c₈</td>
<td>d₆</td>
<td>e₆</td>
</tr>
<tr>
<td>c₅</td>
<td>d₇</td>
<td>e₇</td>
</tr>
</tbody>
</table>

\[R \Join S = \]

<table>
<thead>
<tr>
<th>R</th>
<th>D</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>a₁</td>
<td>b₁</td>
<td>c₁</td>
</tr>
<tr>
<td>a₃</td>
<td>b₃</td>
<td>c₁</td>
</tr>
<tr>
<td>a₅</td>
<td>b₅</td>
<td>c₃</td>
</tr>
</tbody>
</table>
Join-Execution in Distributed DBMS

Even more critical than in centralized data bases

Problem: Join arguments may be distributed to two different nodes of the distributed DBMS

2 possibilities: Join-evaluation with and without filter
Most general case:

Outer argument relation R is allocated to computing node St_R

Inner argument relation S is allocated to computing node St_S

Result of join evaluation is required on third node St_{Result}
Join evaluation without filter

Nested loops

Transfer of one argument relation

Transfer of both argument relations
Nested loops

Iteration over outer relation \(R \) using iteration variable \(r \) and requesting compatible tuples \(s \in S \) with \(r.C = s.C \) (using communication net at \(St_{S} \))

This approach requires for each tuple from \(R \) one request and a compatible tuple set from \(S \) (which may be empty)

\[2 \ast |R| \] messages must be send
Transfer of argument relation

1. Complete transfer of argument relation (e.g. R) to node of other argument relation

2. Exploitation of Index on $S.C$ if available
1. Transfer of both argument relations to node St_{Result}

2. Computation of result on node St_{Result} using
 a) Merge join (if sorted)
 or
 b) Hash join (if unsorted)

→ Loss of existing index for join evaluation
→ No loss of sorting of argument relation(s)
Join evaluation with filter

Filtering using semi joins

Key idea:
transfer only tuples with compatible join partners

Exploiting algebraic equivalences:
\[R \bowtie S = R \bowtie (R \bowtie S) \]
\[R \bowtie S = \Pi_c(R) \bowtie S \]
Join evaluation with filter
(example, filtering relation S)

1. Transfer of different C-values from $R (= \Pi_C(R))$ to St_S

2. Evaluation of semi join $R \bowtie S = \Pi_C(R) \bowtie S$ on St_S and transfer to St_R

3. Evaluation of join on St_R, which only needs the transferred result tuples of semi joins

Transfer costs are reduced iff:

$$\| \Pi_C(R) \| + \| R \bowtie S \| < \| S \|$$

with $\| P \| =$ Size (in Byte) of a relation
Evaluation of the join $R_D S$ with semi join filtering on S.
Alternative evaluation plans

1. Alternative:

\[R \leftarrow I \rightarrow \overline{I} \rightarrow St_{R} \rightarrow S \rightarrow St_{S} \rightarrow \ldots \rightarrow St_{Result} \]

2. Alternative:

\[(R \mathbin{\Join} \Pi_{c}(S)) \mathbin{\Delta} (\Pi_{c}(R) \mathbin{\Join} S) \]
Synchronization of replicated data

Problem:

For data item A there exist several copies A1, A2, ..., An, which may reside on different nodes.

Read actions require only one copy, updates must change all existing copies.

⇒ Problems with high efficiency and availability
Quorum-Consensus approach

Trade-off between efficiency of read and update transactions
+ shifting some overhead from update to read transaction.
 Approach: assign copies A_i of a replicated data item A individual weights

Read quorum $Q_r(A)$
Write quorum $Q_w(A)$

The following conditions must be met:

1. $Q_w(A) + Q_w(A) > W(A)$
2. $Q_r(A) + Q_w(A) > W(A)$
Example

<table>
<thead>
<tr>
<th>Station (S_i)</th>
<th>Kopie (A_i)</th>
<th>Gewicht (w_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>A_1</td>
<td>3</td>
</tr>
<tr>
<td>S_2</td>
<td>A_2</td>
<td>1</td>
</tr>
<tr>
<td>S_3</td>
<td>A_3</td>
<td>2</td>
</tr>
<tr>
<td>S_4</td>
<td>A_4</td>
<td>2</td>
</tr>
</tbody>
</table>

\[W(A) = \sum_{i=1}^{4} w_i(A) = 8 \]

\[Q_r(A) = 4 \]

\[Q_w(A) = 5 \]
States

a) Before writing

<table>
<thead>
<tr>
<th>Station</th>
<th>Kopie</th>
<th>Gewicht</th>
<th>Wert</th>
<th>Versions#</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁</td>
<td>A₁</td>
<td>3</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>S₂</td>
<td>A₂</td>
<td>1</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>S₃</td>
<td>A₃</td>
<td>2</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>S₄</td>
<td>A₄</td>
<td>2</td>
<td>1000</td>
<td>1</td>
</tr>
</tbody>
</table>

b) After writing using write quorum 5

<table>
<thead>
<tr>
<th>Station</th>
<th>Kopie</th>
<th>Gewicht</th>
<th>Wert</th>
<th>Versions#</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁</td>
<td>A₁</td>
<td>3</td>
<td>1100</td>
<td>2</td>
</tr>
<tr>
<td>S₂</td>
<td>A₂</td>
<td>1</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>S₃</td>
<td>A₃</td>
<td>2</td>
<td>1100</td>
<td>2</td>
</tr>
<tr>
<td>S₄</td>
<td>A₄</td>
<td>2</td>
<td>1000</td>
<td>1</td>
</tr>
</tbody>
</table>