Chapter 2

Text Search in a Nutshell

Sergej Sizov
Information Retrieval
Summer term 2009
Motivation

Information Retrieval

a)

b)

c) 73 110 102 111 114 109 97 116 105 111 110

82 101 116 114 105 101 118 97 108
Motivation (2)

Stein von Rosetta

Jean-François Champollion
Motivation (3)

Arthur Conan Doyle

Sherlock Holmes

Arthur Conan Doyle
Motivation (4)

73 110 102 111 114 109 97 116 105 111 110
82 101 116 114 105 101 118 97 108
Text Processing: an overview

Analysis of document structure

- Lexical analysis and parsing
 - Stopword elimination
 - Stemming
 - Indexing
 - Compression
 - Sentences, structure of phrases, tags
- Lexicon / Thesaurus
- Index
- Document Repository
Stopword Elimination

Lookups in stopword lists
(potentially using domain-specific dictionary - lexikon/thesaurus)
e.g. "definition" or "theorem" for math documents

Common language-specific stopwords (prepositions, conjunctions, pronouns, "overloaded" verbs etc. – several hundreds of stopwords):

- a, also, an, and, as, at, be, but, by,
- can, could, do, for, from, go,
- have, he, her, here, his, how,
- I, if, in, into, it, its,
- my, of, on, or, our, say, she,
- that, the, their, there, therefore, they,
- this, these, those, through, to, until,
- we, what, when, where, which, while, who, with, would,
- you, your,
Morphologic Reduction (Lemmatization)

- Grammatical base form:
 Nominative for nouns, infinitive for verbs, plural to singular, passive to active, etc.

Examples:
- "students" to "student", "going" to "go"

 Kontext dependent and phrase dependent
 - "went" to "go",
 - "have been" to "be"

- Linguistical base form
 Tracking of flexion (e.g. declination), composition, substantization, etc.

Examples:
- "nonfood" to "food"
- "founds" to "find"
- "Schweinkram", "Schweinshaxe" und "Schweinebraten" to "Schwein" etc.
Stemming

Ideas:

- use of dictionaries
- recognition through analysis of the linguistical structure
- affix elimination: removal of prefixes and suffixes using (heuristic) rules

Example:

stresses → stress, stressing → stress, symbols → symbol using rules sses → ss, ing → e, s → e, etc.

Note: the usefulness of stemming in IR is not undisputable

Example:

Bill is operating a company.

On his computer he runs the ... operating system.
Thesaurus

For each **concept** (word sense) we store:
- the set of synonyms or instances (**words**)
- the set of generalizations and specializations (hypernyms, hyponyms)
- “part-of” and “contains” relationships (meronyms, holonyms)
- concept-example relationships (e.g. fairytale and cinderella)
- the set of antonyms

For each **word** we store:
- the set of associated **concepts** (e.g. with some statistics)
 (for disambiguation of polysems or homonyms)

Vector Space Model

Basic Principles:

- Feature Space: words in documents are reduced to terms.
- Document model: each document is represented as a vector in $[0,1]^{|F|}$ wherein d_{ij} is the weight of the j-th term in d_i.
- Queries: queries are vectors q_i in $[0,1]^{|F|}$.
- Relevance: relevance of results is based on similarity function for vector space $[0,1]^{|F|}$.
- Indexing: for each term there is a list of Doc-IDs (e.g. URLs) with associated weights, implemented as “inverted file” (search tree or hash table).
- Query execution: query is decomposed into several index-lookups for particular query terms in order to determine the ranked list of candidates.
Vector Space Model Relevance Ranking

Ranking by descending relevance

Query $q \in [0,1]^{|F|}$ (Set of weighted features)

Documents are **feature vectors** $d_i \in [0,1]^{|F|}$

Similarity metric:

$$sim(d_i, q) := \frac{\sum_{i=1}^{|F|} d_{ij} q_j}{\sqrt{\sum_{j=1}^{|F|} d_{ij}^2 \sum_{j=1}^{|F|} q_j^2}}$$

- d_{ij}: Document weight
- q_j: Query weight

- **e.g., using:**
 - $d_{ij} := w_{ij} / \sqrt{\sum_k w_{ik}^2}$
 - $w_{ij} := \frac{freq(f_j, d_i)}{\max_k freq(f_k, d_i)} \log \frac{\#docs}{\#docs with f_i}$

- **tf*idf formula**
Term Weighting

We consider following characteristics for N documents and M terms:

- tf_{ij}: term frequency - frequency of term t_i in document d_j
- df_i: document frequency - number of documents that contain t_i
- idf_i: inverse document frequency = N / df_i
- cf_i: corpus frequency – frequency of t_i in the corpus (e.g. separate counting of title terms, body terms, etc.)

Basic idea:
- The weight w_{ij} of term t_i in document d_j should increase monotonically with tf_{ij} and idf_i

First idea:
- use some tf-idf combination, e.g. $w_{ij} = f_{ij} * idf_i$ (tf-idf formula)
- w_{ij} can be normalized: $d_{ij} = \frac{w_{ij}}{\sqrt{\sum_k w_{k,j}^2}}$
Variations of Term Weighting

Empirical results show that \(tf \) and \(idf \) values usually must be dampened or normalized.

- **normalized \(tf \) values**
 \[
 tf_{ij} = \frac{tf_{ij}}{\max_k tf_{kj}}
 \]

- **\(tf \) weighting mit dampening**
 \[
 tf_{ij} = 1 + \log tf_{ij}
 \]

- **\(idf \) weighting mit dampening**
 \[
 idf_i = \log \frac{N}{df_i}
 \]

- **common combination:**
 \((tf \times idf \text{ formula})\)
 \[
 w_{ij} = \frac{tf_{ij}}{\max_k tf_{kj}} \log \frac{N}{df_i}

 d_{ij} = \frac{w_{ij}}{\sqrt{\sum_k w_{kj}^2}}
 \]
Term Weighting in Queries

Depending of query interface and user category, simple or advanced term weightings may be used:

- simple weighting: \(w_{ij} \in \{0, 1\} \)

- advanced weighting:
 \[
 w_{ij} = \left(0.5 + \frac{0.5 \cdot tf_{ij}}{\max_k tf_{ij}} \right) \cdot \log \frac{N}{df_i}
 \]

- term ranking:
 \[
 w_{ij} = \frac{1}{k}
 \]
 (when conjunctive query \(q \) contains \(k \) terms and \(t_i \) is in \(k^{th} \) position)
Konzeptionell:
invertierte Dateien (invertierte Listen) mit binärer Suche
nach Suchschlüsseln (Felder von Records, Strings in Texten)

Problem:
Speicherungsorganisation in Plattenblöcken (pagination) und effiziente Implementierung der (binären) Suche für
 Exact-Match-Suche: search (key) returns ids
 Bereichssuche: search (lowkey, highkey) returns ids
 Präfixstringsuche: search (prefix) returns ids
bei dynamischen Updates
Properties of Media Types

- CPU Cache (SRAM): 8-32 Mb
- Main Memory (DRAM): 1-128 Gb
- Hard disks: 40-120 Gb (each disk)
- Backup Systems: 500 Gb-1Tb (each changer)

Gap 10^5

Room
- Hamburg (3-5 Std)
- Pluto (2 Jahre)
- Andromeda (2000 J)
Access: Physical Data Organization

Database Page (32-64 Kb)

<table>
<thead>
<tr>
<th>Header</th>
<th>Meyer</th>
<th>123</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Müller</td>
<td>129</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Forwarding-RID

Slot-Array

Cache

Extent Table
B+ Trees: Seitenstrukturierte Mehrwegbäume

- Hohler Mehrwegebaum mit hohem Fanout (\Rightarrow kleiner Tiefe)
- Knoten = Seite auf Platte
- Knoteninhalt:
 - (Sohnzeiger, Schlüssel)-Paare in inneren Knoten
 - Schlüssel (mit weiteren Daten) in Blättern
- perfekt balanciert: alle Blätter haben dieselbe Distanz zur Wurzel
- Sucheefizienz $O(\log_k n/C)$ Seitenzugriffe (Platten-I/Os) bei n Schlüsseln, Seitenkapazität C und Fanout k
 pro Baumniveau: bestimme kleinsten Schlüssel $\geq q$ und suche weiter im Teilbaum links von q
- Kosten einer Einfüge- oder Löschoperation $O(\log_k n/C)$
- mittlere Speicherplatzauslastung bei zufälligem Einfügen: $\ln 2 \approx 0.69$
B+ Trees: Example

B+-Tree

record-IDs or doc-IDs
Ein Mehrwegbaum heißt B*-Baum (eng.: B+ Tree) der Ordnung
(m, m*), wenn gilt:
• Jeder Nichtblattknoten außer der Wurzel enthält mindestens
 m \geq 1 und höchstens 2m Schlüssel (Wegweiser).
• Ein Nichtblattknoten mit k Schlüssel x1, ..., xk hat genau k+1 Söhne
t1, ..., t(k+1), so daß
 • für alle Schlüssel s im Teilbaum ti (2 \leq i \leq k) gilt x(i-1) < s \leq xi und
 • für alle Schlüssel s im Teilbaum t1 gilt s \leq x1 und
 • für alle Schlüssel im Teilbaum t(k+1) gilt xk < s.
• Alle Blätter haben dasselbe Niveau (Distanz von der Wurzel)
• Jedes Blatt enthält mindestens m* \geq 1 und höchstens 2m* Schlüssel.
Achtung: Implementierungen verwenden variabel lange Schlüssel
und eine Knotenkapazität in Bytes statt Konstanten 2m und 2m*

Sonderfall m=m*=1: **2-3-Bäume** als Hauptspeicherdatenstruktur
B$^+$ Trees: Lookup (1)

Query
q: Mainz

![B$^+$ Tree diagram]

- Aachen
- Berlin
- Bonn
- Erfurt
- Essen
- Köln
- Mainz
- Merzig
- Paris
- Saarbrücken
- Trier
- Ulm
Query
q: Gießen
DBS-Style Top-k Query Processing

Given: query \(q = t_1 \ t_2 \ldots \ t_z \) with \(z \) (conjunctive) keywords

similarity scoring function \(\text{score}(q,d) \) for docs \(d \in D \), e.g.: \(\vec{q} \cdot \vec{d} \)

with precomputed scores (index weights) \(s_i(d) \) for which \(q_i \neq 0 \)

Find: top k results w.r.t. \(\text{score}(q,d) = \text{aggr}\{s_i(d)\} \) (e.g.: \(\Sigma_{i \in q} s_i(d) \))

Naive join&sort QP algorithm:

\[
\begin{align*}
\text{top-k (} & \\
\sigma[\text{term}=t_1] \ (\text{index}) & \times & \text{DocId} \\
\sigma[\text{term}=t_2] \ (\text{index}) & \times & \text{DocId} \\
\ldots & \times & \text{DocId} \\
\sigma[\text{term}=t_z] \ (\text{index}) & \times & \text{DocId} \\
\end{align*}
\]

order by \(s \) desc
Index List Processing by Merge Join

Keep L(i) in **ascending order of doc ids**
Compress L(i) by actually storing the gaps between successive doc ids
(or using some more sophisticated prefix-free code)

QP may start with those **L(i) lists that are short and have high idf**
Candidate results need to be looked up in other lists L(j)
To avoid having to uncompress the entire list L(j),
L(j) is encoded into groups of entries
with a **skip pointer** at the start of each group
→ sqrt(n) evenly spaced skip pointers for list of length n
Efficient Top-k Search

threshold algorithms: efficient & principled top-k query processing with monotonic score aggr.

Data items: d_1, \ldots, d_n

Query: $q = (t_1, t_2, t_3)$

TA with sorted access only (NRA):
can index lists; consider d at pos$_i$ in L_i;
$E(d) := E(d) \cup \{i\}$; high$_i := s(t_i,d)$;
worstscore(d) := aggr{$s(t_\nu,d)$ | $\nu \in E(d)$};
bestscore(d) := aggr{$\text{worstscore}(d)$, \[\text{aggr}\{\text{high}_\nu | \nu \notin E(d)\}\}}$;
if worstscore(d) $>$ min-k then add d to top-k
min-k := min{$\text{worstscore}(d')$ | $d' \in \text{top-k}$};
else if bestscore(d) $>$ min-k then
 cand := cand $\cup \{d\}$; s
 threshold := max {bestscore(d') | $d' \in \text{cand}$};
if threshold \leq min-k then exit;

keep $L(i)$ in descending order of scores
Evaluation of Result Quality: Basic Measures

ideal measure is user satisfaction!
heuristically approximated by benchmarking measures
(on test corpora with query suite and relevance assessment by experts)

Capability to return **only** relevant documents:

\[
\text{Precision (Präzision)} = \frac{\text{# relevant docs among top } r}{r}
\]

typically for \(r = 10, 100, 1000 \)

Capability to return **all** relevant documents:

\[
\text{Recall (Ausbeute)} = \frac{\text{# relevant docs among top } r}{\text{# relevant docs}}
\]

typically for \(r = \text{corpus size} \)

Typical quality

Ideal quality
Evaluation of Result Quality: Aggregated Measures

Combining precision and recall into **F measure**
(e.g. with $\alpha=0.5$ harmonic mean F_α):

$$F = \frac{1}{\alpha \frac{1}{\text{precision}} + (1-\alpha) \frac{1}{\text{recall}}}$$

Precision-recall breakeven point of query q:
point on precision-recall curve $p = f(r)$ with $p = r$

for a set of n queries q_1, \ldots, q_n (e.g. TREC benchmark)

Macro evaluation
(user-oriented)

of precision

$$1 \sum_{i=1}^{n} \text{precision}(q_i)$$

$\frac{1}{n}$

Micro evaluation
(system-oriented)

of precision

$$\frac{\sum_{i=1}^{n} \# \text{relevant} \& \text{found docs for } q_i}{\sum_{i=1}^{n} \# \text{found docs for } q_i}$$

analogous for recall and F1
IR necessary but not sufficient for Web search!

- Doesn’t capture authority
 - An article on BBC as good as a copy on john-doe-news.com

- Doesn’t address web navigation
 - Query ibm seeks www.ibm.com
 - www.ibm.com may look less topical than a quarterly report
Problems with common IR-style evaluation on the Web

Collection is dynamic
 10-20% urls change every month
Queries are time sensitive
 Topics are hot then they are not
Spam methods evolve
 Algorithms evaluated against last month’s web may not work today
Need to keep the collection fresh
Need to keep the queries fresh
Search space is extremely large
Over 100 million unique queries a day
To measure a 5% improvement at 95% confidence level:
 .. one would need 2700 judged queries