OWL-SAIQL —
A Schema and Instance Query Language for OWL DL

Alexander Kubiak, Simon Schenk Steffen Staah and Jeff Z. Pah

1 University of Koblenz-Landau, 56070 Koblenz, Germany,
(kubi as| sschenk| st aab) @ini - kobl enz. de,
2 The University of Aberdeen, Aberdeen AB24 3UE, UK,
j pan@sd. abdn. ac. uk

Abstract. Existing approaches for querying OWL DL do either only operate on
syntactic constructs without taking into account the semantics of OWL or do
only have a restricted access to the T-Box. We present OWL-SAIDE novel
Schema And Instance Query Language for OWL DL, that is well suitedrftol-

ogy extraction. We describe its syntax and provide a model-theoreticndiesa

for OWL-SAIQL. Furthermore, we explain a basic evaluation strateg¥iyL-
SAIQL queries that is a suitable basis for optimization techniques knovn fro
database management systems. We illustrate the use of OWL-SAIQL with an
example of ontology extraction and re-use.

Key words: OWL, Query Language, Schema, Ontology Extraction

1 Introduction

With the standardization of the Web Ontology Language OWL tfi§ use and re-use of
ontological knowledge has gained significant momentumuBorg web ontologies it is
crucial to be able to access them in an intuitive and veesaténner. In contrast to RDF,
where SPARQL [2] is providing access to RDF datad RDF schema information, a
corresponding query language is missing for OWL.

Using SPARQL [2] for querying OWL allows the user to query th&/DA-Box
and T-Box, but it is not aware of OWL semantics and it is very barsome, because
of its triple semantics. In fact, we will give some examplésgjwerying desiderata that
cannot easily be fulfilled by SPARQL.

Existing OWL querying approaches, e.g. OWL-QL [3], have omlstricted access
to the T-Box so that only named classes and individuals caretrieved. Recently,
SPARQL-DL [4] has been presented, which can also be useddry @dWL DL on-
tologies and which is aware of the OWL DL semantics. Unfortalya SPARQL-DL
cannot extract class descriptions and does not return esenPWL DL axioms. These
properties are highly desirable as we will show in the folloyv

The requirements for querying OWL naturally include conjivecqueries of the
OWL A-Box [5], but as has also been recently argued for othéology languages

3 A preliminary and partial version of this paper appears in the OWLED?2@8rkshop.

with explicitly queryable schema representations (cf),[8je querying of schema as
well as instance information constitutes an importantufeaof the querying language.

We illustrate our requirements for querying OWL with an apgtion from ontology
extraction (cf. [7]) for re-using parts of an ontology. Whiteplementations of ontology
extraction algorithms are currently dominated by impegeastyle programming, re-
using parts of an ontology would be greatly facilitated byueny language that would
allow querying for schema and instance information. Fatainse, it is useful to ask for
all individuals of classes, which are defined using a re#triowvith a certain property
or having a specific subclass.

As one main contribution, our query language can handles dascriptions and
property names in addition to class names and individuabsaithe extraction of these
class descriptions is of major importance as they provigedifinition for a certain
class name. Instead of extracting isolated class namesdivitiuals like in OWL-QL,
the class names, class descriptions, property names andaliral names are returned
contained in OWL DL axioms. Thus, the result is a fully worki@gVL DL ontology.

In the following, we present our small example use case inlogy extraction and
derive some requirements from it (section 2). We then dissosme of the foundations
on which we build our approach in section 4. In section 5, wesent the original
querying language OWL-SAIQL (Schema And Instance Query Liagg) that is able
to combine T-Box and A-Box querying in an integrated manférally, we discuss
some related work, before we conclude. Although we use oeryganguage to query
OWL DL ontologies in this paper, we do not see any problems ¢oQ\/L-SAIQL for
OWL Lite or OWL 1.1 ontologies.

2 Use Case and Requirements

In our running example, we assume a large ontolddy, or Ont ol ogy, parts of
which we want to extract and re-use for a new informationesysabout cars in or-
der to save costs and ensure high quality (cf., [8] on the fiter@ ontology re-use).
Naturally, we do not want to adopt the given ontology one bg,@s we are only inter-
ested in schema and instance information related to cars.

For extracting our target ontology froibt or Ont ol ogy (see an excerpt in Fig-
ure 1), we are interested in all axioms that contain classesamhich are subclasses
of the cardinality restriction with the value 4 for the proyehasWheel , and their
descriptions. Additionally, we are interested in all ax@about individuals of these
classes. Given the running example in Figure 1, the clasges@ar , Converti bl e
andVan and their descriptions should be delivered as class axiborshermore, the
individual axioms about andv need to be extracted.

From the presented use case we derive the following reqeim&snFirst, the query
language should take into account and use the semantics of DMntologies. By
exploiting their semantics, additional knowledge can Heried that is not explicitly
stated in the ontology. Thus, in our running example thesdfas could be returned as
a subclass ofar without being explicitly mentioned as its subclass.

As a further requirement, the query language should not @theve class names
and individual names, but also class descriptions and psopames. As shown in our

Equi val ent Cl asses(Mot orBi ke restriction(hasWeel cardinality(2)))
Equi val ent C asses(Car restriction(hasWeel cardinality(4)))

Cl ass(Convertible partial Car
restriction(hasConvertibl eTop soneVal uesFromow : Thi ng)))
Cl ass(Van partial restriction(haswWeel cardinality(4))
restriction(hasSlidi ngDoor soneVal uesFronm(ow : Thing)))
Di sj oi nt d asses(Converti bl e Van)

I ndi vi dual (¢ type(Convertible))
I ndi vi dual (v type(Van))
I ndi vi dual (m type(Mot or Bi ke))

Fig. 1. ExampleMbt or Ont ol ogy given in OWL DL (in OWL abstract syntax)

use case, it is not sufficient to return the cl&mverti bl e without knowing its
definition. We also want to retrieve the class descriptiothefclassConverti bl e,
namely that it is a subclass of the cl&@s and that it has an existential restriction for
the propertyhasConverti bl eTop.

Instead of extracting isolated class hames and individuedswant to return the
class names, class descriptions, property names anddodivhames contained in
OWL DL axioms so that the result is a fully working OWL DL ontolpgrlhus, it
should be possible to use the result of an OWL-SAIQL query aspunt for another
OWL-SAIQL query.

As models of OWL ontologies in general are infinite, query agréng might cause
infinite results. In order to ensure finite answers to queviesneed to define privileged
sets of class names, class descriptions, property namesdimiiual names that are
used in query results. These sets should be determined bgtleeste syntactic notation
of the queried ontology, which is always finite.

Finally, we want to state join-like conditions on selectéasses and individuals
by using identical names for variables. For instance, iughbe possible to select all
classeg X so that an individuati belongs to this clas&dX and so that the same class
?X must be a subclass of another clags

3 OWL-SAIQL in a Nutshell

In our running example, we want to extract the axioms for atget ontology from the
ontology which is calledvbt or Ont ol ogy. As we are interested in all axioms about
class names, which are subclasses of the cardinality atéstriwith value 4 for the
propertyhasWeel , their descriptions and their individuals, the OWL-SAIQLeqy

in figure 2 is formulated. Within this query, three variabkes ?X and?Z are used. The
variable?i is treated as a placeholder for an individual name, wheteagdriable? X

is a placeholder for a class name &#lifor a class description. Furthermore, the OWL-
SAIQL query consists of four clauses: TBENSTRUCT clause determines the format
of the extracted axioms, tHeROMclause determines from which ontology axioms are

extracted, th& ET clause associates variables with value ranges andHE&E clause
constitutes the conditions under which axioms are extdacte

CONSTRUCT Subd assO (?X ?Z); Individual (?i type(?X))

FROM Mot or Ont ol ogy

LET I ndi vi dual Nane ?i; C assNanme ?X; C assDescription ?Z

WHERE Subd assOf (?X restriction(hasWieel cardinality(4)))
AND | ndi vi dual (?i type(?X)) AND Subd assO (?X ?2)

Fig. 2. OWL-SAIQL query for our example

4 Abstract Syntax and Semantics for OWL DL

OWL-SAIQL is a query language for OWL DL. In this section, wee@apsome of the
foundations of OWL DL that we need for defining OWL-SAIQL.

4.1 Abstract Syntax for OWL DL

In the following, we present the abstract syntax for OWL DL bgans of an ex-
tended BNF. The syntax is adopted from [9]. For the sake opkaity and consis-

tency, the syntax is slightly simplified leaving out annmtajproperties and import com-
mands. Additionally, some terms are renamed. For exanimetermf act is called

i ndi vi dual Axi omin order to be consistent with the rest of the paper. Furtbegm
we omit datatypes and datatype properties. Based on thiaxsyme will define the syn-
tax of OWL-SAIQL. Below you find an excerpt of the OWL abstractsx in EBNF:

ontology ::= "Ontology(’ [ontologylD] { axiom} ')’
axiom ::= classAxiom | propertyAxiom | individual Axi om
classAxiom::="Cdass(’ classID nodality { description} ')’

| " EnureratedC ass(’ classID { individuallID} ")’

| 'Disjointd asses(’ description { description} ')’

| ' Equival ent Gl asses(’ description { description} ')’
| " Subd assOF (* description description ')’

description ::= classID
| restriction
| "unionOr (" { description }')’
| "intersectionOf(’ { description} ')’
| " complementOf (' description ')’
| "oneOf (" { individualID} ")’

i ndi vi dual Axi om :: = i ndi vi dual

| ' Sanel ndividual (" individuallD {individual ID} ")’
| ' Differentlndividuals(’ individuallD {individuallD} ')’

4.2 Excerpt of OWL DL semantics

In the following, we describe parts of the model-theore¢imantics for OWL DL. The
presented semantics is taken from [10]. We have slightlyifisatits presentation given
here in order to use it more easily for the definition of OWL-QAlin the remainder
of the paper.

Definition 1. Let N, N;p, Npp, N1 be the sets of URI references that can be used
to denote classes, individual-valued properties, datiae properties and individuals.
We denote their union a8 = No U Nyp U Npp U N;. An OWL DL interpretation is
atuplel = (A, AP 1 .P)where

— the individual domaimA’ is a nonempty set of individuals,
— the datatype domair” is a nonempty set of data values,
— T'is an individual interpretation function, and

— .Dis a datatype interpretation function.

Definition 2. An individual interpretation functiorf is a function that maps

— each individual name € N; to an element’ € A7,

— each class namé € N to a subsetC! C A,

— each individual-valued property namé& < N;p to a binary relation
R C AT x AT, and

— each data-valued property narfiec Npp to a binary relationT! C A x AP,

Definition 3. A classis a group of individuals. If a class is only defined by naming i
we call it anatomic classA class descriptiors a declaration of a class using its name
(for atomic classes) or OWL class constructors (for norm@toclasses). Thus, each
atomic class is also a class description.

OWL class constructors are e.g. union, intersection or cemeht of classes, restric-
tions or enumerations. As mentioned in section 4.1, da¢stymd datatype properties
are not considered in detail in this paper. More details efstmantics of OWL DL can
be found in [9].

As models of OWL ontologies are infinite in general, query asréng could cause
infinite answers. In oder to ensure finite answers to quenedhave defined the four
finite setsN¢, Nrp, Npp and N;. Additionally, we must define the finite set of class
descriptions used in the OWL DL ontology.

Definition 4. Given an OWL DL ontology), N¢p is a finite set ofclass descriptions
(constructed fromV) that consists of all class descriptions appearingin

Users can add more class descriptions to the finitéVgg$ that are necessary for
their applications if need arises.
Example. Given the knowledge base in Figure 1, we have:

— N¢ = {Car, Convertible, MotorBike, Van

— N;p = {hasWheel, hasConvertibleTop, hasSlidingDoor

— Npp =10

— Ny ={c,ym}

— Nep = Ne U { restriction(hasWheel cardinality(2)), restriction(hashcar-
dinality(4)), intersectionOf(Car restriction(hasCortitde Top someValuesFrom(
owl:Thing))), intersectionOf(restriction(hasWheel daality(4)) restriction(
hasSlidingDoor someValuesFrom(owl:Thing))), restaofi hasConvertibleTop
someValuesFrom(owl:Thing)), restriction(hasSlidingbesomeValuesFrom(
owl:Thing))}

Furthermore, we need to define what an axiom is. Axioms aregh#&al elements
of OWL DL ontologies and play an important role for OWL-SAIQL.

Definition 5. Given an OWL DL ontologg, anaxiomis a statement that is produced
by theaxi omrule in the OWL DL EBNF and that appearsdnrelating classes, prop-
erties or individuals. The whole set of axioms forms the logioO.

As proposed in [10], we distinguish class axioms, individaxdoms and property ax-
ioms.

5 OWL-SAIQL

In this section the syntax and the model-theoretic senauaficdOWL-SAIQL is de-
scribed. Additionally, a basic evaluation strategy for OWWRIQL queries is proposed.

5.1 Syntax

As mentioned before, axioms are the central elements of OWloiblogies and they
are also important for OWL-SAIQL queries. Their definitioneistended by allowing
variables in them.

Definition 6. An axiom patterrp is defined analogously to an axiom, but allows vari-
ables at positions of class names, class descriptionsyiithatil-valued property names
and individual names. The range of these variables can lereV,, N;, N;p or
N¢p. The name of a variable must start with a “?”.

As proposed for axioms without any variables, an axiom paftecan be either a
class axiom patterpc or an individual axiom patterpi. For the sake of simplicity,
property axiom patterns are not considered within this pamé can be considered
likewise.

Example. The OWL-SAIQL query in Figure 2 contains two individual axiqrat-
terns and three class axiom patterns in @@NSTRUCT clause and in th&\HERE
clause. For instanceic = SubC assOf (?X ?Z) is a class axiom pattern and
=1 ndi vidual (?i type(?X)) isan individual axiom pattern.

The range of a variable is specified in thET clause. In our running example in
Figure 2, the variabl@X is specified as a class name, the varigtiids specified as a
class description and the varialdle is specified as an individual name.

Definition 7. An OWL-SAIQL query has the form

" CONSTRUCT’ construct d ause
"FROM fronC ause

"LET" letd ause

"WHERE' wher ed ause

where

— the construct O ause CC contains a set of axiom patterng, i.e. CC =
Uo' 2s» _
— thef r onCl ause F'C contains an URI reference of an ontolo@y
— thel et ause LC specifies the range of the variables and
— thewher ed ause W contains a conjunction of axiom patterpg i.e. WC =
/\8 Di-
In this paper, we restrict ourselves to a single ontologymfiwhich axioms can be
extracted. The complete syntax for OWL-SAIQL is as follows:

OAL- SAI QL- query ::= "CONSTRUCT' constructC ause
"FROM fronC ause
"LET" | etd ause
"WHERE' wher ed ause

constructC ause ::= axionmPattern {’;’ axionPattern}

fronC ause ::= ontol ogyl D

letd ause ::= variableBinding {';' variabl eBi ndi ng}

whereCl ause ::= axionPattern {" AND axi onPattern}

axi onPattern ::= classAxionPattern | individual Axi onPattern
classNane ::= URIreference

i ndi vi dual Name ::= URIreference

ontol ogyl D ::= URIreference

i ndProperty ::= URIreference

vari abl eBi ndi ng ::= cl assNanmeBi ndi ng

| individual NameBi ndi ng
| classDescriptionBinding
| indPropertyBinding

cl assNameBi nding ::= 'Cd assNanme’ classNaneVar {',’ classNaneVar}

i ndi vi dual NameBi ndi ng ::= "1ndivi dual Narme’ i ndi vi dual NameVar
{",’ individual NaneVar}

cl assDescriptionBinding ::="'C assDescription’ classDescriptionVar
{’,’ classDescriptionVar}

i ndi vi dual PropertyBi nding ::= '1Individual Property’ indPropertyVar
{",’” indPropertyVar}

| exical Form::= a unicode string in normal formC

classNanevar ::= '7?"lexical Form

i ndi vi dual NameVar ::= '7?"|exical Form
cl assDescriptionVar ::="7?"1exical Form
i ndPropertyVar ::="'7?"l|exical Form

cl assNameOr Var = cl assNaneVar | cl assNane
i ndNaneOr Var :: = individual NareVar | individual Narme
cl assDescOr Var = cl assDescVar | classDesc

cl assAxi onPattern ::=
" Subdl assOf (" cl assDescOrVar cl assDescOrvar ')’
| ' Disjointd asses(’ classDescOrVar classbDescOrvar ')’
| " Equival ent O asses(’ classDescOrVar classDescOrVar ')’

cl assDesc ::= cl assNaneO Var
| restriction
| "UnionOr (" {classDescOrvVar } ')’
| "IntersectionCf(’ { classDescOrVar } ')’
| " Compl ementOf (° classDescOrVar ')’

restriction ::="AI(’ indProperty classbDescOVar ")’
| *Some(’ indProperty classDescOrVar ')’
| *Value(’ indProperty indNameOrVar ')’
| "Mn(’ indProperty non-negative-integer ')’
| "Max(' indProperty non-negative-integer ')’
| " Exact(’ indProperty non-negative-integer ')’

i ndi vi dual Axi onmPattern ::=
"I ndi vidual (° indNameOrVar 'type(’ classDescOrvar ')’ ')’
| ’ Samel ndi vidual (° i ndNameOrVar i ndNameOr Var ')’
| '"Differentlndividual s(’ indNameOrVar indNaneOrVar ')’

5.2 Model-Theoretic Semantic for OWL-SAIQL
In this section, we extend OWL DL interpretations to give setita for OWL-SAIQL.

Definition 8. Given an ontology) and a correspondingVc p, the OWL DL interpre-
tation function.” can be extended in such a way that it also maps each class axiom
patternpc and each individual axiom patter to a member of the boolean st 0}.

For each class axiom patterpc = SubClassQt”, D), whereC, D € N¢p are
1if cfc D!

inti . I __
class descriptions fror®: pc' = {0 otherwise

For each class axiom pattepe = DisjointClasse&C, D): whereC, D € N¢p are
1if CcInD! =9

I LI
class descriptions fro®: pc' = {0 otherwise

For each class axiom pattepr = EquivalentClassé€’, D): whereC, D € N¢p
1if ¢! =D!

.. . I _
are class descriptions frof: pc' = { 0 otherwise

For each individual axiom patterpi = Individual(a typgC)), wherea € N is an
Lif of € Of

o . L g
individual name and’ € N¢p is a class description fror®: pi' = {0 otherwise

For each individual axiom patterpi = Samelndividugk b) wherea,b € N; are
Lif of =b'

. .. I
individual namespi* = {0 otherwise

For each individual axiom patterpi = Differentindividual$a b), wherea,b € Ny
Lif af £ f1

are individual namespi' = {0 otherwise

In order to obtain ground instantiated axiom patterns, #wéables of the axiom
patterns have to be replaced by concrete values. Therabspthtion space is restricted
and the differentiation between class names and classipléses is performed.

Definition 9. A substitution[?z; /a4] replaces a variabl€’z, by a valuea,, which is

from the range as defined in theET clause, that is fromVe, Nep, Nyp or Ni. A

solutions = [?x/a] = [?z1/a1][?x2/as] ... [?x,/ay,] of @ WHERE clauseW C is a

composition of substitutiohsone for every variable declared in theéET clause. The
set of all syntactically possible solutions is callgg; .

In order to determine if a solution is valid, tMHERE clauselW C is instantiated
with each solution.

Definition 10. TheWHERE clauseWW C = /\8 p; is instantiated with the solution =
[?x/a] by instantiating its axiom patterng; with the solutions. The instantiated
VHERE clause is written as¥V’ Cy = W Cz5/4). An axiom patterrp instantiatedwith

a solutions = [?x/a] is an axiom pattermp, = pj2,/4) Where every occurrence of a
variable is replaced by the associated value in the solution

Definition 11. A solutions = [?x/a] is valid w.r.t. theWHERE clauseWW C if for each
OWL interpretation/ (WC[—.,w/a])I = 1. The set of valid solutions,, C S,;; of a
WHERE clause is the set of solutions, which are valid w.r.t. W#ERE clause.

The valid solutions, which fulfill the conditions in thAHERE clause can then be
used in order to create new axioms according to the axionenatthat are contained
in the CONSTRUCT clause. Therefore, the axiom patterns in @@NSTRUCT clause
have to be instantiated.

Definition 12. TheCONSTRUCT clauseC'C = |, p; is instantiated with the solution
s = [?x/a] by instantiating its axiom patterns with the solutions. The instantiated
CONSTRUCT clause is written ag'C = C'Clz5/q)-

4 Note that the composition of substitutions here is commutative. Hence, weasily write a
particular order of substitutions to denote an equivalence class of cmdpoibstitutions and
call this one solution.

Definition 13. The set ofresulting axiom®f a SAIQL queryV 4 x is the set of axiom
patterns in theCONSTRUCT clauseCC' instantiated with every valid solution =
[?z/al,i.e.everys € S,: Nax = g, CCs

Note that OWL-SAIQL does not enforce the result in @@NSTRUCT clause to be
consistent. This is up to the user, in order not to limit ptgdmuses of OWL-SAIQL.

5.3 Basic Process for the Query Evaluation

In the following we describe a first and primitive evaluatstrategy for OWL-SAIQL
queries. This strategy is not meant to be scalable, but t@ s a baseline for future
work on efficient query engines. The query evaluation cessisthree steps. In the first
step theLET clause is evaluated: From the ontola@ydeclared in thé&ROMclause we
retrieve three sets of ontology elements by syntacticalgipg the ontology, namely
the finite set of class nameég&-, the finite set of class descriptioN&-p, the finite set of
individual-valued property names;p and the finite set of individual nameg;. The
finite set of class name¥ - contains the names of all atomic classes and the names
of all named complex classes. Additionally, the finite setlaiss description®Vep
contains all class descriptions that appear in the coneyettactic notation of) (note
that this includes all class names). Thi¥g; C Nep.

The range of every variable is bound to one of these sets,dardd in theLET
clause. Afterwards, the set of all syntactically possibletionsS,,;; is created by build-
ing the Cartesian product of the sét&, N¢op, Nyp and Ny according to the used
variables.

In the second step thAHERE clause is evaluated. The conjunction of the axiom
patterns in the\HERE clause is instantiated with each solutiere S,;; and, then, it
is decided for each solutianif it is valid or not. Each valid solutios is added to the
set of valid solutionsS,. This step is suitable for further optimizations like joirder
processing or tree index access [11].

In the third and last step, theONSTRUCT clause is evaluated and the result of
the query is generated. Therefore, the axiom patterns IICONSTRUCT clause are
instantiated with each valid solution € S, and, thus, new axioms are created. The
result of the query evaluation is a new set of axioms, i.evaom@ology.

5.4 Example for Query Evaluation

As mentioned in our use case in section 2, an informatioregystbout a company’s
cars has to be developed. Because of the benefits of re-usiolpgies, an appropriate
part of the company’s ontology, callédt or Ont ol ogy, should be re-used. In order
to extract the correct part of the original ontology, thddaing query is formulated:
“Retrieve all class names that are subclasses of the cétglirestriction with the value
4 for the propertyhasWeel , and their descriptions and individuals which exist in the
ontologyMbt or Ont ol ogy!”

Given the ontologywbt or Ont ol ogy in Figure 1, the OWL-SAIQL query in Fig-
ure 2 is formulated. In the first step of the query evaluatibal ET clause is evaluated.
Thereby, we extract:

— N¢ = {Car, Convertible, MotorBike, Van

— Ny ={c,m,v}

— Nep = Ne U { restriction(hasWheel cardinality(2)), restriction(has#hcar-
dinality(4)), intersectionOf(Car restriction(hasCortitde Top someValuesFrom(
owl:Thing))), intersectionOf(restriction(hasWheel daadity(4)) restriction(
hasSlidingDoor someValuesFrom(owl:Thing))), restdnti hasConvertibleTop
someValuesFrom(owl:Thing)), restriction(hasSlidingibsomeValuesFrom(
owl:Thing))}

— Nrp = {hasWheel, hasConvertibleTop, hasSlidingDoor

Afterwards, the set of all syntactically possible soluiél;; is created. As theET
clause contains a variabPe representing individual names, a variaBMrepresenting
class names and a variatfg representing class descriptionSy;;| = |N;| x |N¢| x
|NeplandS,; = {[?i/d[?X/Convertiblé[?Z / restriction(hasWheel cardinality(R))?i
/ ¢][?X / MotorBikd [?Z / restriction(hasWheel cardinality(4)). ., [?i/ v][?X [Van [?Z
I restriction(hasSlidingDoor someValuesFrom(owl: TH)hg.

In the second step, the conjunction of the axiom patterneéMHERE clause is
evaluated. In our example, the first and the third single raxpattern is a class ax-
iom pattern and the second single axiom pattern is an indliedxiom pattern. After
checking the axiom patternS,, C S, is retrieved.

6 Related Work

The most common way for querying OWL DL for schema and instamioemation is
by using RDF query languages like SPARQL [2] or RQL [12]. Tlwey retrieve RDF
triples that match a given pattern. Unfortunately, thesergilanguages are not aware
of OWL semantics.

For instance, using SPARQL [2] the class natoaver t i bl e in our example use
case could not be retrieved because it is not explicithestass a subclass of the cardi-
nality restriction for the propertgas\Wheel . Even if we use an OWL reasoner such as
Pellet [13] to infer such a relation, there is no standard teagxplicitly store the results
of the inferencing in RDF. Additionally, there are ambiga@erializations e.g. for qual-
ified number restrictions. In our use case restriction(hass\ardinality(4)) could also
be expressed as intersectionOf(restriction(hasWheel antfiality(4)) restriction(has-
Wheel maxCardinality(4))).

Compared to OWL-SAIQL, the RDF query languages are not alskttieve schema
information from the T-Box, which is not explicitly statedhey can only query the
T-Box by inspecting the underlying RDF triples on a syntativel. By using OWL-
SAIQL, explicit and inferred knowledge can be found. Fortémge, in our running
example in section 2 it would not be possible to achieve tlmesanswer that was
retrieved by the OWL-SAIQL query by performing SPARQL querie

There exist also some OWL query languages like OWL-QL [3] or BA-DL [4]
that can be used to query OWL DL ontologies. However, they lads@® some short-
comings regarding the requirements of our example use case.

Cl ass(Car partial Car)
Cl ass(Car partial restriction(hasWeel cardinality(4)))

Cl ass(Convertible partial Car)
Cl ass(Convertibl e parti al
restriction(haswWeel cardinality(4)))
Cl ass(Convertible partial Convertible)
Cl ass(Convertibl e parti al
restriction(hasConvertibl eTop sonmeVal uesFrom ow : Thi ng)))
Cl ass(Convertible partial Car
restriction(hasConvertibl eTop soneVal uesFromow : Thi ng)))

Cl ass(Van partial Car)
Cl ass(Van partial restriction(hasWeel cardinality(4)))
Cl ass(Van partial Van)
Cl ass(Van parti al
restriction(hasSlidi ngDoor someVal uesFrom(ow : Thi ng)))
Cl ass(Van partial restriction(hasWeel cardinality(4))
restriction(hasSlidi ngDoor soneVal uesFronm(ow : Thing)))

I ndi vidual (¢ type(Car))
I ndi vi dual (v type(Car))
I ndi vi dual (¢ type(Convertible))
I ndi vi dual (v type(Van))

Fig. 3. Resulting OWL Ontology for the Given Query Example

For instance, OWL-QL [3] has only a restricted access to tiBoX-so that only
named classes and individuals can be retrieved. Thus, dtipassible to retrieve the
class descriptions that define the named classes.

Very recently, a very interesting approach for querying OWLdbtologies, namely
SPARQL-DL [4], has been presented. SPARQL-DL is able to mBok and A-Box
queries and, thus, it is similar to our query language. @Geytathis query language
is aware of the OWL DL semantics. Unfortunately, SPARQL-DInmat extract class
descriptions and it cannot extract whole OWL DL axioms. Hosvein the future we
envision a synthesis of their approach and ours.

7 Conclusion and Future Work

In this paper we have presented a novel query language for OWlcélled OWL-
SAIQL (Schema And Instance Query Language), that is s@ti@blquerying the T-Box
and the A-Box in a uniform way.

As one main contribution, our query language cannot onhdleaclass names and
individuals, but also class descriptions and property rsari@e extraction of these
class descriptions is of major importance as they provigedifinition for a certain
class name. By constructing OWL DL axioms that contain theaetd class names,

individuals, property names and class descriptions, theryganswer will be a fully
working OWL DL ontology that can be directly re-used.

We have described the syntax and the model-theoretic sasarfitour query lan-
guage OWL-SAIQL. Additionally, we have provided a basic eadion strategy for
OWL-SAIQL queries. As we demonstrated in our running examP¥/L-SAIQL is
appropriate for extracting parts of an ontology (schema iasthnces) that shall be
re-used in other applications.

We have also implemented the basic strategy for evaluatiM-SAIQL queries
using the Pellet reasoner [13]. This prototypical approafcthe OWL-SAIQL query
engine will be improved using query optimization technigjaed better reasoning sup-
port. In our future work, we will also extend the expressgivf OWL-SAIQL, e.g. by
allowing more than one ontology, from which axioms can baee¢d. This capability
will push the approach beyond retrieval from a single orggle the current point of
departure for all declarative query mechanisms - towarteval in the Semantic Web.

Acknowledgments

This work has been partially supported by the EU in the pitsjé&eOn (IST-2006-
027595), K-Space (FP6-027026) and Knowledge Web (IST-BI0442).

References

1. Horrocks, 1., Patel-Schneider, P.F., van Harmelen, F.: Frbih@%nd RDF to OWL: The
Making of a Web Ontology Language . Journal of Web Sematits(2003)

2. Prud’hommeaux, E., Seaborne, A.: SPARQL Query LanguagBDF. Technical report,
W3C http://www.w3.0org/TR/rdf-spargl-query/, October 2006.

3. Fikes, R., Hayes, P., Horrocks, I.: OWL-QL - A Language fedDctive Query Answering
on the Semantic Web. Web Semantics: Science, Services and Agents Woridewide
Web2(1) (2004) 19-29

4. Sirin, E., Parsia, B.. SPARQL-DL: SPARQL Query for OWL-DL.: IRfroceedings of the
2007 International Workshop on OWL: Experiences and directionsl(E®2007). (2007)

5. Horrocks, |., Tessaris, S.: A Conjunctive Query Languag®#gscription Logic Aboxes. In:
Proceedings of the Seventeenth National Conference on Artificial Ireettigand Twelfth
Conference on Innovative Applications of Artificial Intelligence, AAAteBs / The MIT
Press (2000) 399-404

6. Cali, A, Kifer, M.: Containment of Conjunctive Object Meta-Querida: VLDB2006:
Proceedings of the 32nd International Conference on Very Larda Bases, VLDB En-
dowment (2006) 942—-952

7. Sleeman, D.H., Potter, S., Robertson, D., Schorlemmer, W.Mtol@gy extraction for dis-
tributed environments. In: Knowledge Transformation for the Semanéb.WOS Press,
Amsterdam (2003) 80-91

8. Elena Paslaru Bontas, Malgorzata Mochol, R.T.: Case Studies oo@ntBeuse. In:
Proceedings of I-KNOW 05. (2005)

9. Patel-Schneider, P., Hayes, P., Horrocks, |.: Web Ontologglage (OWL) Abstract Syntax
and Semantics. http://www.w3.0rg/TR/owl-semantics, February 2003.

10. Pan, J.Z., Horrocks, I.: Owl-eu: Adding customised datatypesowl. J. Web Sermé(1)
(2006) 29-39

11. d’Amato, C.: Similarity-based Learning Methods for the Semantic. VIRHD thesis, Uni-

versity of Bari (2007)

12. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousdhis Scholl, M.: RQL: A
Declarative Query Language for RDF. In: WWW '02: Proceedingthefl1th International
Conference on World Wide Web, ACM Press (2002) 592-603

13. Sirin, E., Parsia, B.: Pellet: An OWL DL Reasoner. In HaarslevMéller, R., eds.: De-

scription Logics. (2004)

