
OWL-SAIQL —
A Schema and Instance Query Language for OWL DL

Alexander Kubias1, Simon Schenk1, Steffen Staab1, and Jeff Z. Pan2

1 University of Koblenz-Landau, 56070 Koblenz, Germany,
(kubias|sschenk|staab)@uni-koblenz.de,

2 The University of Aberdeen, Aberdeen AB24 3UE, UK,
jpan@csd.abdn.ac.uk

Abstract. Existing approaches for querying OWL DL do either only operate on
syntactic constructs without taking into account the semantics of OWL or do
only have a restricted access to the T-Box. We present OWL-SAIQL3, the novel
Schema And Instance Query Language for OWL DL, that is well suited for ontol-
ogy extraction. We describe its syntax and provide a model-theoretic semantics
for OWL-SAIQL. Furthermore, we explain a basic evaluation strategy for OWL-
SAIQL queries that is a suitable basis for optimization techniques known from
database management systems. We illustrate the use of OWL-SAIQL with an
example of ontology extraction and re-use.

Key words: OWL, Query Language, Schema, Ontology Extraction

1 Introduction

With the standardization of the Web Ontology Language OWL [1], the use and re-use of
ontological knowledge has gained significant momentum. Forusing web ontologies it is
crucial to be able to access them in an intuitive and versatile manner. In contrast to RDF,
where SPARQL [2] is providing access to RDF dataand RDF schema information, a
corresponding query language is missing for OWL.

Using SPARQL [2] for querying OWL allows the user to query the OWL A-Box
and T-Box, but it is not aware of OWL semantics and it is very cumbersome, because
of its triple semantics. In fact, we will give some examples of querying desiderata that
cannot easily be fulfilled by SPARQL.

Existing OWL querying approaches, e.g. OWL-QL [3], have only restricted access
to the T-Box so that only named classes and individuals can beretrieved. Recently,
SPARQL-DL [4] has been presented, which can also be used to query OWL DL on-
tologies and which is aware of the OWL DL semantics. Unfortunately, SPARQL-DL
cannot extract class descriptions and does not return complete OWL DL axioms. These
properties are highly desirable as we will show in the following.

The requirements for querying OWL naturally include conjunctive queries of the
OWL A-Box [5], but as has also been recently argued for other ontology languages

3 A preliminary and partial version of this paper appears in the OWLED-2007 workshop.

with explicitly queryable schema representations (cf. [6]), the querying of schema as
well as instance information constitutes an important feature of the querying language.

We illustrate our requirements for querying OWL with an application from ontology
extraction (cf. [7]) for re-using parts of an ontology. Whileimplementations of ontology
extraction algorithms are currently dominated by imperative style programming, re-
using parts of an ontology would be greatly facilitated by a query language that would
allow querying for schema and instance information. For instance, it is useful to ask for
all individuals of classes, which are defined using a restriction with a certain property
or having a specific subclass.

As one main contribution, our query language can handle class descriptions and
property names in addition to class names and individual names. The extraction of these
class descriptions is of major importance as they provide the definition for a certain
class name. Instead of extracting isolated class names and individuals like in OWL-QL,
the class names, class descriptions, property names and individual names are returned
contained in OWL DL axioms. Thus, the result is a fully workingOWL DL ontology.

In the following, we present our small example use case in ontology extraction and
derive some requirements from it (section 2). We then discuss some of the foundations
on which we build our approach in section 4. In section 5, we present the original
querying language OWL-SAIQL (Schema And Instance Query Language) that is able
to combine T-Box and A-Box querying in an integrated manner.Finally, we discuss
some related work, before we conclude. Although we use our query language to query
OWL DL ontologies in this paper, we do not see any problems to use OWL-SAIQL for
OWL Lite or OWL 1.1 ontologies.

2 Use Case and Requirements

In our running example, we assume a large ontology,MotorOntology, parts of
which we want to extract and re-use for a new information system about cars in or-
der to save costs and ensure high quality (cf., [8] on the benefits of ontology re-use).
Naturally, we do not want to adopt the given ontology one by one, as we are only inter-
ested in schema and instance information related to cars.

For extracting our target ontology fromMotorOntology (see an excerpt in Fig-
ure 1), we are interested in all axioms that contain class names, which are subclasses
of the cardinality restriction with the value 4 for the property hasWheel, and their
descriptions. Additionally, we are interested in all axioms about individuals of these
classes. Given the running example in Figure 1, the class namesCar, Convertible
andVan and their descriptions should be delivered as class axioms.Furthermore, the
individual axioms aboutc andv need to be extracted.

From the presented use case we derive the following requirements: First, the query
language should take into account and use the semantics of OWLDL ontologies. By
exploiting their semantics, additional knowledge can be inferred that is not explicitly
stated in the ontology. Thus, in our running example the classVan could be returned as
a subclass ofCar without being explicitly mentioned as its subclass.

As a further requirement, the query language should not onlyretrieve class names
and individual names, but also class descriptions and property names. As shown in our

EquivalentClasses(MotorBike restriction(hasWheel cardinality(2)))
EquivalentClasses(Car restriction(hasWheel cardinality(4)))

Class(Convertible partial Car
restriction(hasConvertibleTop someValuesFrom(owl:Thing)))

Class(Van partial restriction(hasWheel cardinality(4))
restriction(hasSlidingDoor someValuesFrom(owl:Thing)))

DisjointClasses(Convertible Van)

Individual(c type(Convertible))
Individual(v type(Van))
Individual(m type(MotorBike))

Fig. 1.ExampleMotorOntology given in OWL DL (in OWL abstract syntax)

use case, it is not sufficient to return the classConvertible without knowing its
definition. We also want to retrieve the class description ofthe classConvertible,
namely that it is a subclass of the classCar and that it has an existential restriction for
the propertyhasConvertibleTop.

Instead of extracting isolated class names and individuals, we want to return the
class names, class descriptions, property names and individual names contained in
OWL DL axioms so that the result is a fully working OWL DL ontology. Thus, it
should be possible to use the result of an OWL-SAIQL query as aninput for another
OWL-SAIQL query.

As models of OWL ontologies in general are infinite, query answering might cause
infinite results. In order to ensure finite answers to queries, we need to define privileged
sets of class names, class descriptions, property names andindividual names that are
used in query results. These sets should be determined by theconcrete syntactic notation
of the queried ontology, which is always finite.

Finally, we want to state join-like conditions on selected classes and individuals
by using identical names for variables. For instance, it should be possible to select all
classes?X so that an individual?i belongs to this class?X and so that the same class
?X must be a subclass of another class?Y .

3 OWL-SAIQL in a Nutshell

In our running example, we want to extract the axioms for our target ontology from the
ontology which is calledMotorOntology. As we are interested in all axioms about
class names, which are subclasses of the cardinality restriction with value 4 for the
propertyhasWheel, their descriptions and their individuals, the OWL-SAIQL query
in figure 2 is formulated. Within this query, three variables?i, ?X and?Z are used. The
variable?i is treated as a placeholder for an individual name, whereas the variable?X
is a placeholder for a class name and?Z for a class description. Furthermore, the OWL-
SAIQL query consists of four clauses: TheCONSTRUCT clause determines the format
of the extracted axioms, theFROM clause determines from which ontology axioms are

extracted, theLET clause associates variables with value ranges and theWHERE clause
constitutes the conditions under which axioms are extracted.

CONSTRUCT SubClassOf(?X ?Z); Individual(?i type(?X))
FROM MotorOntology
LET IndividualName ?i; ClassName ?X; ClassDescription ?Z
WHERE SubClassOf(?X restriction(hasWheel cardinality(4)))

AND Individual(?i type(?X)) AND SubClassOf(?X ?Z)

Fig. 2.OWL-SAIQL query for our example

4 Abstract Syntax and Semantics for OWL DL

OWL-SAIQL is a query language for OWL DL. In this section, we repeat some of the
foundations of OWL DL that we need for defining OWL-SAIQL.

4.1 Abstract Syntax for OWL DL

In the following, we present the abstract syntax for OWL DL by means of an ex-
tended BNF. The syntax is adopted from [9]. For the sake of simplicity and consis-
tency, the syntax is slightly simplified leaving out annotation properties and import com-
mands. Additionally, some terms are renamed. For example, the termfact is called
individualAxiom in order to be consistent with the rest of the paper. Furthermore,
we omit datatypes and datatype properties. Based on this syntax, we will define the syn-
tax of OWL-SAIQL. Below you find an excerpt of the OWL abstract syntax in EBNF:

ontology ::= ’Ontology(’ [ontologyID] { axiom } ’)’
axiom ::= classAxiom | propertyAxiom | individualAxiom
...

classAxiom ::= ’Class(’ classID modality { description } ’)’
| ’EnumeratedClass(’ classID { individualID } ’)’
| ’DisjointClasses(’ description { description } ’)’
| ’EquivalentClasses(’ description { description } ’)’
| ’SubClassOf(’ description description ’)’

description ::= classID
| restriction
| ’unionOf(’ { description }’)’
| ’intersectionOf(’ { description } ’)’
| ’complementOf(’ description ’)’
| ’oneOf(’ { individualID } ’)’

...

individualAxiom ::= individual

| ’SameIndividual(’ individualID {individualID} ’)’
| ’DifferentIndividuals(’ individualID {individualID} ’)’

...

4.2 Excerpt of OWL DL semantics

In the following, we describe parts of the model-theoretic semantics for OWL DL. The
presented semantics is taken from [10]. We have slightly modified its presentation given
here in order to use it more easily for the definition of OWL-SAIQL in the remainder
of the paper.

Definition 1. Let NC , NIP , NDP , NI be the sets of URI references that can be used
to denote classes, individual-valued properties, data-valued properties and individuals.
We denote their union asN = NC ∪ NIP ∪ NDP ∪ NI . An OWL DL interpretation is
a tupleI = (∆I ,∆D, .I , .D) where

– the individual domain∆I is a nonempty set of individuals,
– the datatype domain∆D is a nonempty set of data values,
– .I is an individual interpretation function, and
– .D is a datatype interpretation function.

Definition 2. An individual interpretation function.I is a function that maps

– each individual namea ∈ NI to an elementaI ∈ ∆I ,
– each class nameC ∈ NC to a subsetCI ⊆ ∆I ,
– each individual-valued property nameR ∈ NIP to a binary relation

RI ⊆ ∆I × ∆I , and
– each data-valued property nameT ∈ NDP to a binary relationT I ⊆ ∆I × ∆D.

Definition 3. A classis a group of individuals. If a class is only defined by naming it,
we call it anatomic class. A class descriptionis a declaration of a class using its name
(for atomic classes) or OWL class constructors (for non-atomic classes). Thus, each
atomic class is also a class description.

OWL class constructors are e.g. union, intersection or complement of classes, restric-
tions or enumerations. As mentioned in section 4.1, datatypes and datatype properties
are not considered in detail in this paper. More details of the semantics of OWL DL can
be found in [9].

As models of OWL ontologies are infinite in general, query answering could cause
infinite answers. In oder to ensure finite answers to queries,we have defined the four
finite setsNC , NIP , NDP andNI . Additionally, we must define the finite set of class
descriptions used in the OWL DL ontologyO.

Definition 4. Given an OWL DL ontologyO, NCD is a finite set ofclass descriptions
(constructed fromN) that consists of all class descriptions appearing inO.

Users can add more class descriptions to the finite setNCD that are necessary for
their applications if need arises.
Example.Given the knowledge base in Figure 1, we have:

– NC = {Car, Convertible, MotorBike, Van}
– NIP = {hasWheel, hasConvertibleTop, hasSlidingDoor}
– NDP = ∅
– NI = {c,v,m}
– NCD = NC ∪ { restriction(hasWheel cardinality(2)), restriction(hasWheel car-

dinality(4)), intersectionOf(Car restriction(hasConvertibleTop someValuesFrom(
owl:Thing))), intersectionOf(restriction(hasWheel cardinality(4)) restriction(
hasSlidingDoor someValuesFrom(owl:Thing))), restriction(hasConvertibleTop
someValuesFrom(owl:Thing)), restriction(hasSlidingDoor someValuesFrom(
owl:Thing))}

Furthermore, we need to define what an axiom is. Axioms are thecentral elements
of OWL DL ontologies and play an important role for OWL-SAIQL.

Definition 5. Given an OWL DL ontologyO, anaxiom is a statement that is produced
by theaxiom rule in the OWL DL EBNF and that appears inO relating classes, prop-
erties or individuals. The whole set of axioms forms the ontologyO.

As proposed in [10], we distinguish class axioms, individual axioms and property ax-
ioms.

5 OWL-SAIQL

In this section the syntax and the model-theoretic semantics of OWL-SAIQL is de-
scribed. Additionally, a basic evaluation strategy for OWL-SAIQL queries is proposed.

5.1 Syntax

As mentioned before, axioms are the central elements of OWL DLontologies and they
are also important for OWL-SAIQL queries. Their definition isextended by allowing
variables in them.

Definition 6. An axiom patternp is defined analogously to an axiom, but allows vari-
ables at positions of class names, class descriptions, individual-valued property names
and individual names. The range of these variables can be either NC , NI , NIP or
NCD. The name of a variable must start with a “?”.

As proposed for axioms without any variables, an axiom pattern p can be either a
class axiom patternpc or an individual axiom patternpi. For the sake of simplicity,
property axiom patterns are not considered within this paper, but can be considered
likewise.

Example.The OWL-SAIQL query in Figure 2 contains two individual axiompat-
terns and three class axiom patterns in theCONSTRUCT clause and in theWHERE
clause. For instance,pc = SubClassOf(?X ?Z) is a class axiom pattern andpi
= Individual(?i type(?X)) is an individual axiom pattern.

The range of a variable is specified in theLET clause. In our running example in
Figure 2, the variable?X is specified as a class name, the variable?Z is specified as a
class description and the variable?i is specified as an individual name.

Definition 7. AnOWL-SAIQL query has the form

’CONSTRUCT’ constructClause
’FROM’ fromClause
’LET’ letClause
’WHERE’ whereClause

where

– the constructClause CC contains a set of axiom patternspj , i.e. CC =
⋃m

0 pj ,
– thefromClause FC contains an URI reference of an ontologyO,
– theletClause LC specifies the range of the variables and
– thewhereClause WC contains a conjunction of axiom patternspi , i.e.WC =

∧n
0 pi .

In this paper, we restrict ourselves to a single ontology, from which axioms can be
extracted. The complete syntax for OWL-SAIQL is as follows:

OWL-SAIQL-query ::= ’CONSTRUCT’ constructClause
’FROM’ fromClause
’LET’ letClause
’WHERE’ whereClause

constructClause ::= axiomPattern {’;’ axiomPattern}
fromClause ::= ontologyID
letClause ::= variableBinding {’;’ variableBinding}
whereClause ::= axiomPattern {’AND’ axiomPattern}

axiomPattern ::= classAxiomPattern | individualAxiomPattern

className ::= URIreference
individualName ::= URIreference
ontologyID ::= URIreference
indProperty ::= URIreference

variableBinding ::= classNameBinding
| individualNameBinding
| classDescriptionBinding
| indPropertyBinding

classNameBinding ::= ’ClassName’ classNameVar {’,’ classNameVar}
individualNameBinding ::= ’IndividualName’ individualNameVar

{’,’ individualNameVar}
classDescriptionBinding ::= ’ClassDescription’ classDescriptionVar

{’,’ classDescriptionVar}
individualPropertyBinding ::= ’IndividualProperty’ indPropertyVar

{’,’ indPropertyVar}

lexicalForm ::= a unicode string in normal form C
classNameVar ::= ’?’lexicalForm

individualNameVar ::= ’?’lexicalForm
classDescriptionVar ::= ’?’lexicalForm
indPropertyVar ::= ’?’lexicalForm

classNameOrVar ::= classNameVar | className
indNameOrVar ::= individualNameVar | individualName
classDescOrVar ::= classDescVar | classDesc

classAxiomPattern ::=
’SubClassOf(’ classDescOrVar classDescOrVar ’)’
| ’DisjointClasses(’ classDescOrVar classDescOrVar ’)’
| ’EquivalentClasses(’ classDescOrVar classDescOrVar ’)’

classDesc ::= classNameOrVar
| restriction
| ’UnionOf(’ {classDescOrVar } ’)’
| ’IntersectionOf(’ { classDescOrVar } ’)’
| ’ComplementOf(’ classDescOrVar ’)’

restriction ::= ’All(’ indProperty classDescOrVar ’)’
| ’Some(’ indProperty classDescOrVar ’)’
| ’Value(’ indProperty indNameOrVar ’)’
| ’Min(’ indProperty non-negative-integer ’)’
| ’Max(’ indProperty non-negative-integer ’)’
| ’Exact(’ indProperty non-negative-integer ’)’

individualAxiomPattern ::=
’Individual(’ indNameOrVar ’type(’ classDescOrVar ’)’ ’)’
| ’SameIndividual(’ indNameOrVar indNameOrVar ’)’
| ’DifferentIndividuals(’ indNameOrVar indNameOrVar ’)’

5.2 Model-Theoretic Semantic for OWL-SAIQL

In this section, we extend OWL DL interpretations to give semantics for OWL-SAIQL.

Definition 8. Given an ontologyO and a correspondingNCD, the OWL DL interpre-
tation function.I can be extended in such a way that it also maps each class axiom
patternpc and each individual axiom patternpi to a member of the boolean set{1, 0}.

For each class axiom patternpc = SubClassOf(C,D), whereC,D ∈ NCD are

class descriptions fromO: pcI =

{

1 if CI ⊆ DI

0 otherwise
.

For each class axiom patternpc = DisjointClasses(C,D): whereC,D ∈ NCD are

class descriptions fromO: pcI =

{

1 if CI ∩ DI = ∅
0 otherwise

.

For each class axiom patternpc = EquivalentClasses(C,D): whereC,D ∈ NCD

are class descriptions fromO: pcI =

{

1 if CI = DI

0 otherwise
.

For each individual axiom patternpi = Individual(a type(C)), wherea ∈ NI is an

individual name andC ∈ NCD is a class description fromO: piI =

{

1 if aI ∈ CI

0 otherwise
.

For each individual axiom patternpi = SameIndividual(a b) wherea, b ∈ NI are

individual names:piI =

{

1 if aI = bI

0 otherwise
.

For each individual axiom patternpi = DifferentIndividuals(a b), wherea, b ∈ NI

are individual names:piI =

{

1 if aI 6= f I

0 otherwise
.

In order to obtain ground instantiated axiom patterns, the variables of the axiom
patterns have to be replaced by concrete values. Thereby, the solution space is restricted
and the differentiation between class names and class descriptions is performed.

Definition 9. A substitution[?x1/a1] replaces a variable?x1 by a valuea1, which is
from the range as defined in theLET clause, that is fromNC , NCD, NIP or NI . A
solutions = [?x/a] = [?x1/a1][?x2/a2] . . . [?xn/an] of a WHERE clauseWC is a
composition of substitutions4, one for every variable declared in theLET clause. The
set of all syntactically possible solutions is calledSall.

In order to determine if a solution is valid, theWHERE clauseWC is instantiated
with each solution.

Definition 10. TheWHERE clauseWC =
∧n

0 pi is instantiated with the solutions =
[?x/a] by instantiating its axiom patternspi with the solutions. The instantiated
WHERE clause is written asWCs = WC[?x/a]. An axiom patternp instantiatedwith
a solutions = [?x/a] is an axiom patternps = p[?x/a] where every occurrence of a
variable is replaced by the associated value in the solution.

Definition 11. A solutions = [?x/a] is valid w.r.t. theWHERE clauseWC if for each
OWL interpretationI (WC[?x/a])

I = 1. The set of valid solutionsSv ⊆ Sall of a
WHERE clause is the set of solutions, which are valid w.r.t. theWHERE clause.

The valid solutions, which fulfill the conditions in theWHERE clause can then be
used in order to create new axioms according to the axiom patterns that are contained
in theCONSTRUCT clause. Therefore, the axiom patterns in theCONSTRUCT clause
have to be instantiated.

Definition 12. TheCONSTRUCT clauseCC =
⋃n

0 pj is instantiated with the solution
s = [?x/a] by instantiating its axiom patternspj with the solutions. The instantiated
CONSTRUCT clause is written asCCs = CC[?x/a].

4 Note that the composition of substitutions here is commutative. Hence, we can easily write a
particular order of substitutions to denote an equivalence class of composed substitutions and
call this one solution.

Definition 13. The set ofresulting axiomsof a SAIQL queryNAX is the set of axiom
patterns in theCONSTRUCT clauseCC instantiated with every valid solutions =
[?x/a], i.e. everys ∈ Sv: NAX =

⋃

s∈Sv

CCs

Note that OWL-SAIQL does not enforce the result in theCONSTRUCT clause to be
consistent. This is up to the user, in order not to limit potential uses of OWL-SAIQL.

5.3 Basic Process for the Query Evaluation

In the following we describe a first and primitive evaluationstrategy for OWL-SAIQL
queries. This strategy is not meant to be scalable, but to serve as a baseline for future
work on efficient query engines. The query evaluation consists of three steps. In the first
step theLET clause is evaluated: From the ontologyO declared in theFROM clause we
retrieve three sets of ontology elements by syntactically parsing the ontology, namely
the finite set of class namesNC , the finite set of class descriptionsNCD, the finite set of
individual-valued property namesNIP and the finite set of individual namesNI . The
finite set of class namesNC contains the names of all atomic classes and the names
of all named complex classes. Additionally, the finite set ofclass descriptionsNCD

contains all class descriptions that appear in the concretesyntactic notation ofO (note
that this includes all class names). Thus,NC ⊆ NCD.

The range of every variable is bound to one of these sets, as declared in theLET
clause. Afterwards, the set of all syntactically possible solutionsSall is created by build-
ing the Cartesian product of the setsNC , NCD, NIP andNI according to the used
variables.

In the second step theWHERE clause is evaluated. The conjunction of the axiom
patterns in theWHERE clause is instantiated with each solutions ∈ Sall and, then, it
is decided for each solutions if it is valid or not. Each valid solutions is added to the
set of valid solutionsSv. This step is suitable for further optimizations like join order
processing or tree index access [11].

In the third and last step, theCONSTRUCT clause is evaluated and the result of
the query is generated. Therefore, the axiom patterns in theCONSTRUCT clause are
instantiated with each valid solutions ∈ Sv and, thus, new axioms are created. The
result of the query evaluation is a new set of axioms, i.e. a new ontology.

5.4 Example for Query Evaluation

As mentioned in our use case in section 2, an information system about a company’s
cars has to be developed. Because of the benefits of re-using ontologies, an appropriate
part of the company’s ontology, calledMotorOntology, should be re-used. In order
to extract the correct part of the original ontology, the following query is formulated:
“Retrieve all class names that are subclasses of the cardinality restriction with the value
4 for the propertyhasWheel, and their descriptions and individuals which exist in the
ontologyMotorOntology!”

Given the ontologyMotorOntology in Figure 1, the OWL-SAIQL query in Fig-
ure 2 is formulated. In the first step of the query evaluation,theLET clause is evaluated.
Thereby, we extract:

– NC = {Car, Convertible, MotorBike, Van}
– NI = {c, m, v}
– NCD = NC ∪ { restriction(hasWheel cardinality(2)), restriction(hasWheel car-

dinality(4)), intersectionOf(Car restriction(hasConvertibleTop someValuesFrom(
owl:Thing))), intersectionOf(restriction(hasWheel cardinality(4)) restriction(
hasSlidingDoor someValuesFrom(owl:Thing))), restriction(hasConvertibleTop
someValuesFrom(owl:Thing)), restriction(hasSlidingDoor someValuesFrom(
owl:Thing))}

– NIP = {hasWheel, hasConvertibleTop, hasSlidingDoor}

Afterwards, the set of all syntactically possible solutionsSall is created. As theLET
clause contains a variable?i representing individual names, a variable?X representing
class names and a variable?Z representing class descriptions,|Sall| = |NI | × |NC | ×
|NCD| andSall = {[?i / c][?X / Convertible][?Z / restriction(hasWheel cardinality(2))], [?i
/ c][?X / MotorBike][?Z / restriction(hasWheel cardinality(4))], . . ., [?i / v][?X / Van][?Z
/ restriction(hasSlidingDoor someValuesFrom(owl:Thing))] }.

In the second step, the conjunction of the axiom patterns in theWHERE clause is
evaluated. In our example, the first and the third single axiom pattern is a class ax-
iom pattern and the second single axiom pattern is an individual axiom pattern. After
checking the axiom patterns,Sv ⊆ Sall is retrieved.

6 Related Work

The most common way for querying OWL DL for schema and instanceinformation is
by using RDF query languages like SPARQL [2] or RQL [12]. Theycan retrieve RDF
triples that match a given pattern. Unfortunately, these query languages are not aware
of OWL semantics.

For instance, using SPARQL [2] the class nameConvertible in our example use
case could not be retrieved because it is not explicitly stated as a subclass of the cardi-
nality restriction for the propertyhasWheel. Even if we use an OWL reasoner such as
Pellet [13] to infer such a relation, there is no standard wayto explicitly store the results
of the inferencing in RDF. Additionally, there are ambiguous serializations e.g. for qual-
ified number restrictions. In our use case restriction(hasWheel cardinality(4)) could also
be expressed as intersectionOf(restriction(hasWheel minCardinality(4)) restriction(has-
Wheel maxCardinality(4))).

Compared to OWL-SAIQL, the RDF query languages are not able toretrieve schema
information from the T-Box, which is not explicitly stated.They can only query the
T-Box by inspecting the underlying RDF triples on a syntactic level. By using OWL-
SAIQL, explicit and inferred knowledge can be found. For instance, in our running
example in section 2 it would not be possible to achieve the same answer that was
retrieved by the OWL-SAIQL query by performing SPARQL queries.

There exist also some OWL query languages like OWL-QL [3] or SPARQL-DL [4]
that can be used to query OWL DL ontologies. However, they havealso some short-
comings regarding the requirements of our example use case.

Class(Car partial Car)
Class(Car partial restriction(hasWheel cardinality(4)))

Class(Convertible partial Car)
Class(Convertible partial

restriction(hasWheel cardinality(4)))
Class(Convertible partial Convertible)
Class(Convertible partial

restriction(hasConvertibleTop someValuesFrom(owl:Thing)))
Class(Convertible partial Car

restriction(hasConvertibleTop someValuesFrom(owl:Thing)))

Class(Van partial Car)
Class(Van partial restriction(hasWheel cardinality(4)))
Class(Van partial Van)
Class(Van partial

restriction(hasSlidingDoor someValuesFrom(owl:Thing)))
Class(Van partial restriction(hasWheel cardinality(4))

restriction(hasSlidingDoor someValuesFrom(owl:Thing)))

Individual(c type(Car))
Individual(v type(Car))
Individual(c type(Convertible))
Individual(v type(Van))

Fig. 3. Resulting OWL Ontology for the Given Query Example

For instance, OWL-QL [3] has only a restricted access to the T-Box so that only
named classes and individuals can be retrieved. Thus, it is not possible to retrieve the
class descriptions that define the named classes.

Very recently, a very interesting approach for querying OWL DL ontologies, namely
SPARQL-DL [4], has been presented. SPARQL-DL is able to mix T-Box and A-Box
queries and, thus, it is similar to our query language. Certainly, this query language
is aware of the OWL DL semantics. Unfortunately, SPARQL-DL cannot extract class
descriptions and it cannot extract whole OWL DL axioms. However, in the future we
envision a synthesis of their approach and ours.

7 Conclusion and Future Work

In this paper we have presented a novel query language for OWL DL, called OWL-
SAIQL (Schema And Instance Query Language), that is suitable for querying the T-Box
and the A-Box in a uniform way.

As one main contribution, our query language cannot only handle class names and
individuals, but also class descriptions and property names. The extraction of these
class descriptions is of major importance as they provide the definition for a certain
class name. By constructing OWL DL axioms that contain the extracted class names,

individuals, property names and class descriptions, the query answer will be a fully
working OWL DL ontology that can be directly re-used.

We have described the syntax and the model-theoretic semantics of our query lan-
guage OWL-SAIQL. Additionally, we have provided a basic evaluation strategy for
OWL-SAIQL queries. As we demonstrated in our running example, OWL-SAIQL is
appropriate for extracting parts of an ontology (schema andinstances) that shall be
re-used in other applications.

We have also implemented the basic strategy for evaluating OWL-SAIQL queries
using the Pellet reasoner [13]. This prototypical approachof the OWL-SAIQL query
engine will be improved using query optimization techniques and better reasoning sup-
port. In our future work, we will also extend the expressivity of OWL-SAIQL, e.g. by
allowing more than one ontology, from which axioms can be retrieved. This capability
will push the approach beyond retrieval from a single ontology - the current point of
departure for all declarative query mechanisms - towards retrieval in the Semantic Web.

Acknowledgments

This work has been partially supported by the EU in the projects NeOn (IST-2006-
027595), K-Space (FP6-027026) and Knowledge Web (IST-2004-507842).

References

1. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The
Making of a Web Ontology Language . Journal of Web Semantics1(1) (2003)

2. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Technical report,
W3C http://www.w3.org/TR/rdf-sparql-query/, October 2006.

3. Fikes, R., Hayes, P., Horrocks, I.: OWL-QL - A Language for Deductive Query Answering
on the Semantic Web. Web Semantics: Science, Services and Agents on theWorld Wide
Web2(1) (2004) 19–29

4. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL Query for OWL-DL. In: Proceedings of the
2007 International Workshop on OWL: Experiences and directions (OWLED-2007). (2007)

5. Horrocks, I., Tessaris, S.: A Conjunctive Query Language forDescription Logic Aboxes. In:
Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial Intelligence, AAAI Press / The MIT
Press (2000) 399–404

6. Cali, A., Kifer, M.: Containment of Conjunctive Object Meta-Queries. In: VLDB’2006:
Proceedings of the 32nd International Conference on Very Large Data Bases, VLDB En-
dowment (2006) 942–952

7. Sleeman, D.H., Potter, S., Robertson, D., Schorlemmer, W.M.: Ontology extraction for dis-
tributed environments. In: Knowledge Transformation for the Semantic Web. IOS Press,
Amsterdam (2003) 80–91

8. Elena Paslaru Bontas, Malgorzata Mochol, R.T.: Case Studies on Ontology Reuse. In:
Proceedings of I-KNOW 05. (2005)

9. Patel-Schneider, P., Hayes, P., Horrocks, I.: Web Ontology Language (OWL) Abstract Syntax
and Semantics. http://www.w3.org/TR/owl-semantics, February 2003.

10. Pan, J.Z., Horrocks, I.: Owl-eu: Adding customised datatypes into owl. J. Web Sem.4(1)
(2006) 29–39

11. d’Amato, C.: Similarity-based Learning Methods for the Semantic Web. PhD thesis, Uni-
versity of Bari (2007)

12. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: RQL: A
Declarative Query Language for RDF. In: WWW ’02: Proceedings ofthe 11th International
Conference on World Wide Web, ACM Press (2002) 592–603

13. Sirin, E., Parsia, B.: Pellet: An OWL DL Reasoner. In Haarslev, V., Möller, R., eds.: De-
scription Logics. (2004)

