Advanced Data Modeling

Minimal Models

Steffen Staab
Overview

- Logic as query language.
- Grounding.
- Minimal Herbrand models.
- Completion.
Given:
- first-order formula $A[x_1, \ldots, x_n]$
- Herbrand interpretation I

This first-order formula can be considered as a definition of a relation R_A on T^n_{Σ} as follows:

$$\forall (t_1, \ldots, t_n) \in R_A := I \models A[t_1, \ldots, t_n]$$
We say that a clause
\[
p(t_1, \ldots, t_m) :\neg L_1, \ldots, L_n
\]
defines the relation symbol \(p \).

Let \(C \) be a set of clauses and \(p \) be a relation symbol. We call the definition of \(p \) in \(C \) the set of all clauses in \(C \) that define \(p \).
Principles of semantics

A deductive database is a set of clauses.

This set of clauses is regarded as a collection of definitions of relations.

The semantics defines the meaning of this definitions by associating with them an interpretation, or a class of interpretations.

Query answering is based on the semantics.
Two key assumptions

- the **unique name assumption**: each name denotes a unique object.

- the **closed world assumption**:
 - a negative statement \(\neg A \) holds if the corresponding positive one \(A \) does not hold.

Both assumptions are not supported by (Tarskian) models for first-order logics (**why not?**). One solution: minimal models
Let \(I \) be a Herbrand model of a set of formulas \(S \).

We call \(I \) a minimal Herbrand model of \(S \) if it is minimal w.r.t. the subset relation, i.e. for every Herbrand model \(I' \) of \(S \) of the same signature we have \(I' \supseteq I \).

\(I \) is called the least Herbrand model of \(S \) if for every Herbrand model \(I' \) of \(S \) of the same signature we have \(I \subseteq I' \).
Does every set of formulas S have a least Herbrand model?
Does every set of formulas S have a least Herbrand model?

Counterexample for normal clauses:

- person(a).
- man(X) :- person(X), not woman(X).
- woman(X) :- person(X), not man(X).
Does every set of formulas S have a least Herbrand model?

What about definite clauses?
Let $E, E´$ be a pair of terms or formulas.

$E´$ is an **instance** of E, denoted $E > E´$, if there exists a substitution θ such that $E\theta = E´$.

ground instance: instance that is ground,

$E´$ is a **variant** of E if $E´$ is an instance of E and E is an instance of $E´$.
Examples

- $P(x,a)$ is instance of $P(x,y)$ because of $P(x,y)[y|a]$

- $P(b,a)$ is a ground instance

- $P(x,y)$ and $P(u,v)$ are variants of each other, because of
 - $[x|u, y|v]$ and
 - $[u|x, v|y]$
Let C be a set of clauses and Σ be any signature containing all symbols used in C. The **grounding of C w.r.t. Σ**, denoted C^*, is the set of all ground instances of the signature Σ of clauses in C.

Lemma. Let I be a Herbrand interpretation and C be a set of clauses. Then $I \models C$ if and only if $I \models C^*$.
General proof scheme

First order formula \xrightarrow{\text{calculus}} \text{Propositional formula} \xrightarrow{\text{calculus}} \text{First order Consequences} \\
(\text{all possible ways of}) \xrightarrow{\text{grounding}} \text{lifting} \\
\text{Propositional formula} \xrightarrow{\text{calculus}} \text{Propositional Consequences}
- Proof
Additional atomic formulas $s = t$, where s, t are terms.

Abbreviation: $x \neq y := \neg(x = y)$.

Unlike other relations, the semantics of $s = t$ is predefined in all Herbrand interpretations: $I \models s = t$ if s coincides with t.
Example valid formulas

- $f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n) \rightarrow x_1 = y_1 \land \ldots \land x_n = y_n$
- $f(x_1, \ldots, x_n) \neq g(y_1, \ldots, y_n)$
- $f(x_1, \ldots, x_n) \neq c$
- $d \neq c$
- $A[t] \iff \forall x(x = t \rightarrow A[x])$
Consider a definition of a relation r

$r(\bar{t}_1) : \neg G_1$

\[\ldots\]

$r(\bar{t}_m) : \neg G_m$

What is the meaning of this definition?

Is there a largest Herbrand model?

Especially in the light of negation as failure?
Idea of completion

man(hans).
man(adam).
person(eva).
woman(X) :- person(X), not man(X).

Is eva a woman?
 She might be a man and we just don’t know!
 Minimal model says that she is not a woman!

Trick: Completion:
man(X) ↔ (X=hans ∨ X=adam).
woman(X) ↔ X=eva.

I.e. hans and adam are the only men.
man(hans).
man(X) :- lovesBeer(X,Y).

Completion:
man(X) ↔ X=hans ∨ (∃ Y: X=U ∧ lovesBeer(U,Y))

A man is a man only if he is hans or if he loves some brand of beer.
Completion. Step 1.

Replace every clause by an equivalent one such that the arguments of r are x_1, \ldots, x_n:

Given:
$$r(t_1, \ldots, t_n) :- G$$

Replace by:
$$r(x_1, \ldots, x_n) :- x_1 = t_1 \land \ldots \land x_n = t_n \land G$$
Completion. Step 2.

If there are variables y_1, \ldots, y_k occurring in a body but not in the head, apply \exists to these variables, i.e.,

Given

$r(x_1, \ldots, x_n) :- G$

Modify to

$r(x_1, \ldots, x_n) :- \exists y_1 \ldots \exists y_k G$
Completion. Step 3.

If there are several definitions, replace them by one

Given

\[r(x_1, \ldots, x_n) \leftarrow G_1 \]

\[\ldots \]

\[r(x_1, \ldots, x_n) \leftarrow G_m \]

Replace by

\[r(x_1, \ldots, x_n) \leftarrow G_1 \lor \ldots \lor G_m \]
Completion. Step 4.

Replace :-) by \leftrightarrow:

Given
\[r(x_1, \ldots, x_n) :\neg G_1 \lor \ldots \lor G_m \]

Replace by
\[r(x_1, \ldots, x_n) \leftrightarrow G_1 \lor \ldots \lor G_m \]

The formula
\[r(x_1, \ldots, x_n) \leftrightarrow G_1 \lor \ldots \lor G_m \]

is called the **completed definition** of the original set of clauses.
Example

\[r(u,v) :- p(u,1,z). \]
\[r(v,u) :- p(2,u,z). \]

\[r(x,y) :- x=u \land y=v \land p(u,1,z). \]
\[r(x,y) :- x=v \land y=u \land p(2,v,z). \]

\[r(x,y) :- \exists z,u,v \; x=u \land y=v \land p(u,1,z). \]
\[r(x,y) :- \exists z,u,v \; x=u \land y=v \land p(2,v,z). \]

\[r(x,y) \leftrightarrow (\exists z,u,v \; x=u \land y=v \land p(u,1,z)) \lor (\exists z,u,v \; x=u \land y=v \land p(2,v,z)) \]
Properties

- All steps **preserve Herbrand models**, except for the last one.
 - Why?

- Gives a **unique semantics to non-recursive definitions**
 - What about recursive definitions?

- Logic programming **semantics and first-order semantics coincide for definite programs**
Recursive definitions

odd(1).
even(f(X)) :- odd(X).
odd(f(X)) :- even(X).

Completion:

odd(X) ↔ X=1 ∨ (X=f(Y) ∧ even(Y)).
even(X) ↔ X=f(Y) ∧ odd(Y).
Recursive definitions

person(adam).
person(eva).
woman(X) :- person(X), not man(X).
man(X) :- person(X), not woman(X).

Completion:
woman(X) ↔ (Y=X ∧ person(Y) ∧ not man(Y)).
man(X) ↔ (Y=X ∧ person(Y) ∧ not woman(Y)).

Semantics not unique in logic programming:
Models are
l={woman(adam),woman(eva)}
l={man(adam),man(eva)}
l={woman(adam),man(eva)}
l={man(adam),woman(eva)}

What is the semantics in first order logics?
Recursive definitions

person(adam).
person(eva).
woman(X) :- person(X), not man(X).
man(X) :- person(X), not woman(X).

Completion:
woman(X) ↔ (Y=X ∧ person(Y) ∧ not man(Y)).
man(X) ↔ (Y=X ∧ person(Y) ∧ not woman(Y)).

Semantics not unique in logic programming:
Models are (add \{person(adam),person(eva)\} to each)
\I=\{woman(adam),woman(eva)\}
\I=\{man(adam),man(eva)\}
\I=\{woman(adam),man(eva)\}
\I=\{man(adam),woman(eva)\}

What is the semantics in first order logics?
Models are: woman^\I=\{\}=man^\I
Simple characterization of completion

Let C be a definition of r, I be a Herbrand model of the corresponding completed definition, and $r(t_1, \ldots, t_n)$ be a ground atom.

Then

$I \models r(t_1, \ldots, t_n) \iff \exists (r(t_1, \ldots, t_n) \leftarrow L_1, \ldots, L_m) \in C^* (I \models L_1 \land \ldots \land L_n)$:
Immediate consequence operator

\[T_C(I) := \{ A \mid \text{there exists } (A :- G) \in C^* \text{ such that } I \models G \} \]

Fixpoint: an interpretation such that \(T_C(I) = I \).
Definite clauses have the least model

Let \(C \) be a set of definite clauses.

Define

\[
\begin{align*}
I_0 & := \{\} \\
I_{n+1} & := T_C(I_n), \text{ for all } n \geq 0, \\
I_\omega & := \bigcup_{i=0}^{\omega} I_i
\end{align*}
\]

Then \(I_\omega \) is the least fixpoint of \(T_C \) and also the least Herbrand model of \(C \).
Let C be a non-recursive database and K be an arbitrary interpretation.

Define

\[
\begin{align*}
I_0 & := K \\
I_{n+1} & := T_C(I_n), \text{ for all } n \geq 0, \\
I_\omega & := \bigcup_{i=0}^{\omega} I_i
\end{align*}
\]

Then I_ω is the only fixpoint of T_C. Moreover, for some n we have $I_\omega = I_n$.
Non-recursive sets of clauses

- Let C be a set of clauses.

- Its **dependency graph** consists of pairs $p \rightarrow r$ such that p occurs in the body of a clause which defines r in C.

- A set of clauses is **non-recursive** if the dependency graph contains no cycles.
Non-recursive sets of clauses

Let C be a set of clauses.

Its dependency graph consists of pairs $p \rightarrow r$ such that p occurs in the body of a clause which defines r in C.

A set of clauses is **non-recursive** if the dependency graph contains no cycles.

Person(a).
Woman(X) :- Person(X), Not Man(X).
Man(X) :- Person(X), Not Woman(X).
Non-recursive sets of clauses

Dependency graph of C consists of pairs $p \rightarrow r$ such that p occurs in the body of a clause which defines r in C. C is non-recursive if the dependency graph contains no cycles.

A relation p depends on a relation q in C if there exists a path of length ≥ 1 from q to p in the dependency graph of C. A set of clauses is non-recursive if and only if no relation depends on itself.