Procedural Semantics

Soundness of SLD-Resolution
Properties of Substitution

Propositions:
Let θ, ρ, γ be substitutions, E an expression.

- $\theta \cdot \varepsilon = \varepsilon \cdot \theta = \theta$ (Identity)
- $(E \theta) \rho = E \theta \rho$ (Associativity)
- $(\theta \rho) \gamma = \theta (\rho \gamma)$ (Associativity)

Proof:
Follows from definition of ε
prove proposition for $E = x$
prove $E (\theta \rho) \gamma = E \theta (\rho \gamma)$ for $E = x$ and 2.

Example
Definition:
Let S be a finite set of simple expressions. A Substitution θ is called a unifier for S, if $S\theta$ is a singleton.
A unifier θ is called a most general unifier (mgu) for S if, for each unifier ρ of S there exists a substitution γ such that $\rho=\theta\gamma$.

Example

Note: If there exist two mgu's then they are variants.
Definition:
Let S be a finite set of simple expressions. Locate the leftmost symbol position at which not all expressions in S have the same symbol and extract from each expression in S the subexpression beginning at that symbol position. The set of all such subexpressions is the \textit{disagreement set}.

Example:
Let $S=\{p(f(x), h(y), a), p(f(x), z, a), p(f(x), h(y), b)\}$, then the disagreement set is $\{h(y), z\}$.
1. put \(k:=0 \) and \(\rho_0:=\varepsilon \)

2. If \(S_{\rho_k} \) is a singleton, Then \(\text{return}(\rho_k) \)
 Else find the disagreement set \(D_k \) of \(S_{\rho_k} \)

3. If there exist a variable \(v \) and a term \(t \) in \(D_k \) such that \(v \)
does not occur in \(t \),
 // non-deterministic choice
 Then put \(\rho_{k+1} := \rho_k[v/t] \), \(k++ \), \(\text{goto} \ 2 \)
 Else exit // \(S \) is not unifiable
\[\rho_0 = \varepsilon, \ k=1 \]
\[S_{\rho_0} = \{\text{even}(0), \text{even}(y)\} \]
\[D_0 = \{0, y\} \]
choose variable \(y \), term 0
put \(\rho_1 := \varepsilon[0/y], \ k=1 \)

\[S_{\rho_1} = \{\text{even}(0)\} \]

return.
Unification Theorem

Theorem:
Let S be a finite set of simple expressions. If S is unifiable, then the unification algorithm terminates and gives a mgu for s. If S is not unifiable, then the unification algorithm terminates and reports this fact.

Proof Sketch:
Assume θ is a unifier for S. Show that until termination for all k:
$\theta = \rho_k \gamma_k$
Unification Theorem

Proof Sketch:
Assume θ is a unifier for S. Show that until termination for all k:
$\theta = \rho_k \gamma_k$

Induction start: $\rho_0 = \varepsilon$, $\gamma_0 = \theta$

From k to $k+1$ (we only need to consider $S\rho_k$, because otherwise, we are done):
$|S\theta| = 1 \Rightarrow |D\gamma_k| = 1$

Pick a variable v and a term t, then:
- $v\gamma_k = t\gamma_k$
- $\rho_{k+1} = \rho_k \{v/t\}$
- $\gamma_{k+1} = \gamma_k \setminus \{v/\gamma_k\}$, i.e. if v is bound in γ_k then
 - $\gamma_k = \{v/\gamma_k\} \cup \gamma_{k+1} = \{v/t_{\gamma_k}\} \cup \gamma_{k+1} = \{v/t\} \gamma_{k+1}$
 - $\theta = \rho_k \gamma_k = \rho_k \{v/t\} \gamma_{k+1} = \rho_{k+1} \gamma_{k+1}$
SLD-Resolution

• SLD: SL-resolution for definite clauses
• SL: Linear resolution with selection function
Definition:

Let G be $\leftarrow A_1, \ldots, A_m, \ldots, A_k$
and C be $A \leftarrow B_1, \ldots, B_q$.
Then G' is derived from G and C using mgu θ, if:

a. A_m is an Atom, called the selected atom, in G
b. θ is an mgu of A_m and A.
c. G' is the goal $\leftarrow (A_1, \ldots, B_1, \ldots, B_q, \ldots, A_k)\theta$.

In resolution terminology G' is called a resolvent of G and C.
Definition:
Let P be a definite program and G_0 a definite goal. An *SLD-Derivation* of $P \cup \{G_0\}$ consists of a (finite or infinite) sequence G_0, G_1, G_2, \ldots of goals, a sequence C_1, C_2, \ldots of variants of program clauses of P and a sequence $	heta_1, \theta_2, \ldots$ of mgu's such that each G_{i+1} is derived from G_i and C_{i+1} using $	heta_{i+1}$.

standardising apart the variables:
subscribe all variables in C_i with i.

Otherwise $\leftarrow p(x)$. could not be unified with $p(f(x)) \leftarrow$.

each program clause variant C_1, C_2, \ldots is called an *input clause* of the derivation.
SLD-Derivation visualised

\[\leftarrow A_1, \ldots, B_1, \ldots, B_q, \ldots, A_k \theta_1 \]

\[\leftarrow A_1, \ldots, A_m, \ldots, A_k \]

\[(\leftarrow A_1 \theta_1, \ldots, B_1 \theta_1, \ldots, D_1, \ldots, D_l, \ldots, B_q \theta_1, \ldots, A_k \theta_1) \theta_2 \]

\[G_0 \rightarrow G_1 \rightarrow G_2 \rightarrow G_3 \rightarrow \cdots \rightarrow G_{n-1} \rightarrow G_n \]

\[C_1, \theta_1 \rightarrow C_2, \theta_2 \rightarrow C_3, \theta_3 \rightarrow \cdots \rightarrow C_n, \theta_n \]

\[A \leftarrow B_1, \ldots, B_q. \quad \theta_1 = \text{mgu}(A, A_m). \]

\[B \leftarrow D_1, \ldots, D_l. \quad \theta_2 = \text{mgu}(B, B_0 \theta_1). \]
Example – Restricted SLD-Refutation

Program P
1 Q(x) :- R(g(x)).
2 R(y).

Goal: Q(f(z)).

Computed Answer
\{x/f(z), y/g(f(z))\} restricted to variables of Q(f(z)) results in ε

Q(x) :- R(g(x)).
\(\theta_1 = \text{mgu}(Q(x), Q(f(z)))\)

\(= \{x/f(z)\}\)

R(y)←.
\(\theta_2 = \text{mgu}(R(y), R(g(f(z))))\)

\(= \{y/g(f(z))\}\)
Example – Unrestricted SLD-Refutation

unrestricted → unifiers need not be mgu’s

Program P
1 Q(x) :- R(g(x)).
2 R(y).

Goal: Q(f(z)).

\[\begin{array}{l}
G_0 \rightarrow \text{G}_\text{1} \\
C_1, \theta_1 \rightarrow C_2, \theta_2 \\
Q(x) :- R(g(x)). \\
\theta_1 = \{x/f(a), z/a\} \\
R(y) \leftarrow. \\
\theta_2 = \{y/g(f(a))\} \\
\end{array} \]

\[\begin{array}{l}
\leftarrow Q(f(z)) \\
\leftarrow R(g(f(a))). \quad \square \\
\end{array} \]

Correct Answer:
\{x/f(a), z/a, y/g(f(z))\}
restricted to variables of Q(f(z)) results in {z/a}
Definition:

An *SLD-refutation* of $P \cup \{G\}$ is a finite SLD-derivation of $P \cup \{G\}$, which has \square as the last goal in the derivation. If $G_n = \square$, we say the refutation has *length* n.

SLD-derivations can be *finite* or *infinite*.
A finite SLD-derivation can be *successful* or *fail*.
An SLD-derivation is successful, if it ends in \square.
An SLD-derivation is *failed*, if it ends in a non-empty goal, which cannot be unified with the head of a program clause.
Definition:
Let P be a definite program. The *success set* of P is the set of all \(A \in B_P \) such that \(P \cup \{ \leftarrow A \} \) has an SLD-refutation.

Procedural Counterpart of the Least Herbrand Model!
Definition:
Let P be a definite program and G a definite goal. Let $	heta_1...\theta_n$ be the sequence of mgu's used in an SLD-refutation of $P \cup \{G\}$.

A computed answer θ for $P \cup \{G\}$ is the substitution obtained by restricting the composition $\theta_1...\theta_n$ to the variables of G.
Example: P=Slowsort

\textbf{goal:}\
\[
\leftarrow \text{sort}(17.22.6.5.\text{nil},y)
\]

\textbf{computed answer:}\
\[
\{y/5.6.17.22.\text{nil}\}
\]

\text{sort}(x,y) \leftarrow \text{sorted}(y), \text{perm}(x,y)

\text{sorted}(\text{nil}) \leftarrow

\text{sorted}(x.\text{nil}) \leftarrow

\text{sorted}(x.y.z) \leftarrow x \leq y, \text{sorted}(y.z)

\text{perm}(\text{nil},\text{nil}) \leftarrow

\text{perm}(x.y,u.v) \leftarrow \text{delete}(u,x.y,z),\text{perm}(z,v)

\text{delete}(x,x.y,y) \leftarrow

\text{delete}(x,y.z,y.w) \leftarrow \text{delete}(x,z,w)

0 \leq x \leftarrow

f(x) \leq f(y) \leftarrow x \leq y.
Theorem
Let \(P \) be a definite program and \(G \) a definite goal. Then every computed answer for \(P \cup \{G\} \) is a correct answer for \(P \cup \{G\} \).

Proof
Let \(G \) be the goal \(\leftarrow A_1, \ldots, A_k \) and \(\theta_1 \ldots \theta_n \) the sequence of mgu's in a refutation of \(P \cup \{G\} \).
Show that \(\forall ((A_1, \ldots, A_k) \theta_1 \ldots \theta_n) \) is a logical consequence of \(P \) using induction (starting at the last goal) over the length of the derivation.
Corollary

The success set of a definite program is contained in its least Herbrand model.

Proof

Let the program be P, let $A \in B_P$ and suppose $P \cup \{\leftarrow A\}$ has a refutation. By the theorem on the prior slide A is a logical consequence of P. Thus A is in the least Herbrand model of P.
• **strengthen this corollary**
 If \(A \in B_P \) and \(P \cup \{ \leftarrow A \} \) has a refutation of length \(n \), then \(A \in T_P \uparrow n \).

• **Notation**
 \([A] = \{ A' \in B_P : A' = A\theta \text{ for some substitution } \theta \}\)
Completeness of SLD-Resolution

- Not treated this year, check out

- http://isweb.uni-koblenz.de/Teaching/SS08/adm08