Fixpoint Semantics for Logic Programming

See Melvin Fitting 2002
If you read and understand Fitting’s survey paper you have learned a sufficient amount of knowledge in this class.

Note that some things are given a slightly different name – but mean the same as things we have learned here.
Simplifications

Given a logic program P with clauses C,

Construct P^* with clauses C^* by

- replace "$A ← \ldots$" by "$A ← true$",
- ground instantiate all clauses from C,
- if the ground atom A is not the head of any member of P^*, add "$A ← false$".

Example:

$$P(x) :- Q(x), R(x).$$
$$R(a).$$

Becomes P^*

$$R(a) :- true.$$
$$P(a) :- Q(a), R(a).$$
$$Q(a) :- false.$$
Minimize with respect to order, i.e. default to false:

Definition: The space \{false, true\} is given the truth ordering false \(<_t true\), with \(x <_t y\) not holding in any other case. We use \(\leq_t\) as usual for \(<_t\) or \(=\).

\[
\begin{array}{ccc}
\text{false} & \overset{<_t}{\rightarrow} & \text{true}
\end{array}
\]

This ordering is extended to interpretations pointwise:
\(I_1 \leq_t I_2\) if and only if \(I_1(A) \leq_t I_2(A)\) for all ground atoms \(A\).
Side remark

$\top_P \downarrow_\omega$ is not necessarily the biggest fixpoint, but $\top_P \downarrow_\alpha$ for some $\alpha > \omega$
Fixpoints

We know: Normal programs do not have one smallest fixpoint

Approach:
1. Consider two (or more) fixpoints
2. Consider multi-valued interpretations
Partial interpretations

We know: A classical interpretation assigns every ground atom a truth value from \{true, false\}.

Consider:
\[P :- P. \]
\[Q. \]

Smallest fixpoint: \{Q\}

Largest fixpoint. \{Q,P\}

Idea:
- What is true in both fixpoints is true.
- What is true in one fixpoint, but false in the other is uncertain \perp.
Definition: A partial valuation is a mapping I from the set of ground atoms to the set \{\bot, false, true$\}$, meeting the conditions

$I(false) = false$

and

$I(true) = true$

We often refer to partial valuations as three valued.
Three valued knowledge ordering

Definition: The space \{⊥, false, true\} is given a knowledge ordering \(⊥ <_k \text{false}, \quad ⊥ <_k \text{true}\), with \(x <_k y\) not holding in any other case. Then \(\leq_k\) is defined as usual.

\[
\begin{array}{ccc}
\text{false} & \xrightarrow{<_k} & \text{true} \\
\downarrow & & \downarrow \\
⊥ & & ⊥ \\
\end{array}
\]

The ordering is again extended to partial interpretations pointwise:

\[I_1 \leq_k I_2 \iff I_1(A) \leq_k I_2(A)\] for all ground atoms \(A\).
Alternative notation

Describe three-valued interpretation I as pair (T,F) of true ground atoms T and false ground atoms F.

Then $I_1 \leq_k I_2$ iff $T_1 \subseteq T_2$ and $F_1 \subseteq F_2$ ("I_2 knows more than I_1")
Mapping \(\Phi_P \)

Definition. Let \(P \) be a normal program. An associated mapping \(\Phi_P \), from partial interpretations to partial interpretations, is defined as follows.

\[
\Phi_P(I) = J
\]

where \(J \) is the unique partial interpretation determined by the following: for a ground atom \(A \),

1. \(J(A) = \text{true} \) if there is a general ground clause \(A \leftarrow B_1, \ldots, B_n \) in \(P^* \) with head \(A \), such that \(I(B_1) = \text{true} \) and \(\ldots \) and \(I(B_n) = \text{true} \).
2. \(J(A) = \text{false} \) if for every general ground clause \(A \leftarrow B_1, \ldots, B_n \) in \(P^* \) with head \(A \), \(I(B_1) = \text{false} \), or \(\ldots \), \(I(B_n) = \text{false} \).
3. \(J(A) = \bot \) otherwise.
Kleene’s strong three-valued logic

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A ∧ B</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>⊥</td>
<td>false</td>
</tr>
<tr>
<td>⊥</td>
<td>true</td>
<td>⊥</td>
</tr>
<tr>
<td>⊥</td>
<td>false</td>
<td>⊥</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A ∨ B</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>⊥</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>⊥</td>
<td>true</td>
<td>⊥</td>
</tr>
<tr>
<td>⊥</td>
<td>false</td>
<td>⊥</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>¬ A</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>True</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>
Proposition: For a general program P, the operator Φ_P is monotone with respect to \leq_k:

$I_1 \leq_k I_2$ implies $\Phi_P(I_1) \leq_k \Phi_P(I_2)$.

Note: The smallest fixed point of Φ_P supplies the Fitting semantics (also called Kripke-Kleene semantics) with

$$\Phi_P \uparrow 0 = \perp$$
$$\Phi_P \uparrow \alpha + 1 = \Phi_P(\Phi_P \uparrow \alpha)$$
$$\Phi_P \uparrow \lambda = \bigcup \{\Phi_P \uparrow \alpha \mid \alpha < \lambda\}$$

with λ being a limit ordinal, but \bigcup is with respect to \leq_k.
Differences and Commonalities between T_P and Φ_P

Q :- Q.
Fixpoint for T_P is \emptyset, i.e. $I(Q)=\text{false}$

Q :- Q.
Fixpoint for Φ_P is (\emptyset,\emptyset), i.e. $I(Q)=\bot$.

Q :- not Q.
No fixpoint.

Q :- not Q.
Fixpoint for Φ_P is (\emptyset,\emptyset), i.e. $I(Q)=\bot$.

Proposition: Let P be a definite program. Let I_k be the smallest fixed point of Φ_P (with respect to \leq_k), and let j_t and J_t be the smallest and the biggest fixed points of T_P (with respect to \leq_t). Then, for a ground atom A,

- If $j_t(A) = J_t(A)$, then $I_k(A)$ has this common value.
- If $j_t(A) \neq J_t(A)$ then $I_k(A)=\bot$.

Belnap’s four-valued Logic

Knowledge and truth ordering

Default f: closed world, default ⊥: open world
Truth values for Belnap’s logic

⊥ = {}
false = {false}
true={true}
⊤={true,false}

≤_k is now simply defined by ⊆ over I=(T,F)

≤_k is a lattice, ≤_t is a lattice; their combination is a bi-lattice.
Logical connectives formalizable as (infinitely distributive) functions on this ordering:

\[a \lor b = \sup_t(a,b) \]
\[a \land b = \inf_t(a,b) \]
\[a \oplus b = \sup_k(a,b) \]
\[a \otimes b = \inf_k(a,b) \]

\[\neg a = \begin{cases}
 f, & \text{if } a = t \\
 t, & \text{if } a = f \\
 a, & \text{otherwise}
\end{cases} \]

Four binary operations, all distributive laws hold.
Newly define interpretations

\[I(A \land B) = I(A) \land I(B) \]
\[I(A \otimes B) = I(A) \otimes I(B) \]
etc.

Definition. Let P be a normal program. Let P* be its grounding as defined before. Let P** be the completion of P* (with possibly infinitely long ground clauses).

\[\Phi_P(I) = J, \]
\[\Phi_P(I) = J, \]
where J is the unique interpretation determined by the following:

if \(A \leftarrow B \) is in P**, then \(J(A) = I(B) \),
where we use Belnap’s logic to evaluate I(B).
Smallest and biggest fixed points

Proposition 19: Let i_t and l_t be the smallest and biggest fixed points of the four-valued operator Φ_P with respect to the \leq_t ordering, where P is a definite program. Likewise, let j_k and J_k be the smallest and biggest fixed points of Φ_P with respect to the \leq_k ordering.

We can state that:

\begin{align*}
 j_k &= i_t \otimes l_t \\
 J_k &= i_t \oplus l_t \\
 i_t &= j_k \land J_k \\
 l_t &= j_k \lor J_k
\end{align*}
On the Semantics of Trust on the Semantic Web

Simon Schenk
ISWC 2008, Karlsruhe, Germany
"Quantum of Solace"

"Olga Kurylenko toughest Bond-Girl ever."
olga: GoodActor
qos: GoodAction

WELT ONLINE
"Olga Kurylenko flat like a stale Martini."
olga: ¬GoodActor
qos: GoodAction

Spiegel ∪ Welt globally inconsistent.

To judge, whether Quantum of Solace is a good action movie, we need paraconsistent reasoning:

olga: GoodActor → ⊤ qos: GoodAction → ⊤
"Quantum of Solace"

SPIEGEL ONLINE
- olga: GoodActor
- qos: GoodAction

WELT ONLINE
- olga: ¬GoodActor
- qos: GoodAction

Mail Online
- olga: ¬GoodActor
- qos: ¬GoodAction

DIE ZEIT

FAZ.NET

SPIEGEL ONLINE

Mail Online

Trust in News Sources

qos: GoodAction \rightarrow t_{so,w}

olga: GoodActor \rightarrow t_{so,w,m}

General Trust Order

daniel: GoodActor

?
Other Examples

- Collaborative Ontology Editing
 - Editors trusted differently
 - Personal relation
 - Even if possible, strict trust order for employees might be illegal

- Caching
 - Distinguish between certain and possibly outdated information

...
Overview

- Motivation
- Logical Bilattices
- „Trust Bi-Lattices“
- SROIQ on bilattices
- Outlook and Conclusion
Logical Bi-lattices

Knowledge and truth ordering

Logical connectives formalizable as (infinitely distributive) functions on this ordering:

\[a \vee b = \sup_{k}(a,b) \]
\[a \wedge b = \inf_{t}(a,b) \]
\[a \oplus b = \sup_{k}(a,b) \]
\[a \otimes b = \inf_{t}(a,b) \]

\[\neg a = \begin{cases} f, & \text{if } a = t \\ t, & \text{if } a = f \\ a, & \text{otherwise} \end{cases} \]

Default \(f \): closed world, default \(\bot \): open world
Other bilattices

- e.g. *designed* for default reasoning

\[
\text{SEVEN}
\]

\[
\text{NINE}
\]
Generate logical bilattice based on trust order

Lukasiewicz:
Derive (distributive) bilattice from two (distributive) lattices as follows:

Given two distributive lattices L_1 and L_2, create a bilattice L, where the nodes have values from $L_1 \times L_2$, such that

$(a,b) \leq_k (x,y)$ iff $a \leq_{L_1} x \land b \leq_{L_2} y$

$(a,b) \leq_t (x,y)$ iff $a \leq_{L_1} x \land y \leq_{L_2} b$

For example, FOUR = $\{0,t\} \times \{0,f\}$:

```
(0,0) -> (0,f) -> (t,0) -> (t,f) -> (0,0)
```

```
FOUR
```

Generate Lattice from Trust Order

Derive L_1 and L_2 from trust order T over information sources S_i:

$L_1 = L_2 = \{ (f_i, t_i) \mid (f_i, t_i) \in S \} \cup \{(t_i, t_j) \mid (i, j) \in T \} \cup \{(f_i, f_j) \mid (j, i) \in T \}$

Problem: $t_b \oplus t_c = ? t_\infty$
Augmented Trust Order

Derive L_1 and L_2 from augmented trust order T over information sources S:

$$L_1 = L_2 = \{(f_i, t_i) \mid i \in S\} \cup \{(t_i, t_j) \mid (i,j) \in T\} \cup \{(f_i, f_j) \mid (j,i) \in T\}$$
Use trust order to derive a logical bilattice.

Example for comparable information sources:
FOUR-T (2)

leads to:

a) comparable sources

b) incomparable sources
Application: Inconsistency Resolution

Reasons for Inconsistencies:
\[tv(a) = t_x : \quad a \leftarrow A \]
\[tv(a) = f_y : \quad a \leftarrow B \]

\[f_x \land t_y = \top_{xy} \] (inconsistent)

Subscript of \(\top \) reflects the maximally and minimally trusted information sources, which cause the inconsistency.

Possible resolution: Find minimal inconsistent subontology
Drop minimally trusted axioms.
Application: Inconsistency Resolution

olga:GoodActor \rightarrow $T_{W,SO}$
qos:GoodAction \rightarrow $T_{M,SO,W} = f_M \oplus t_{SO,W}$

Minimally and maximally trusted source contributing to the inconsistency

MUPS for qos:GoodAction
qos:GoodAction \rightarrow $t_{SO,W}$
qos:GoodAction \rightarrow f_M
Conclusion and Future Work

- Go watch „Quantum of Solace“ (Simon’s recommendation)

- Trust based reasoning on logical bilattices
 - Derived from any partial trust order
 - Applicable to a broad variety of languages

- Current Work:
 - Publication almost accepted:
 - Ontology Debugging Using Provenance