Stratified Programs
Observation:
Every normal program is consistent (has a model), but this is not necessarily true for $\text{comp}(P)$.

Example:

program P:

- $p \leftarrow \neg q$
- $q \leftarrow \neg r$
- $r \leftarrow \neg p$

$I = \{p, q, r\}$ is a model

$\text{comp}(P)$:

- $p \leftrightarrow \neg q$
- $q \leftrightarrow \neg r$
- $r \leftrightarrow \neg p$

By transitivity:

- $p \leftrightarrow \neg p$

Thus there exists no model for $\text{comp}(P)$.
Definition:

A *level mapping* of a normal program is a mapping from its set of predicate symbols to the non-negative integers. We refer to the value of a predicate symbol under this mapping as the *level* of that predicate symbol.
Level mapping

Level mapping:
mapping from a set of relation symbols to N.
l(r) is called the level of r.

Theorem. Let C be a finite non-recursive set of clauses. Then there exists a level mapping l such that for every clause c \(\in\) C,
if \(q\) occurs in the body of c and c defines \(r\),
then \(l(r) > l(q)\).
Definition:
A normal program is hierarchical if it has a mapping such that in every program clause
\[A \leftarrow L_1, \ldots, L_n, \] the level of every predicate symbol occurring in the body is less than the level of \(A \).

Observation:
not hierarchical:
\[\text{relatedTo}(x, y) \leftarrow \text{relatedTo}(y, x) \]
• **Definition:**

A normal program is stratified if it has a level mapping such that in every clause $A \leftarrow L_1, \ldots, L_n$,

- the level of the predicate symbol of every positive literal is less or equal to the level of A and
- the level of each predicate symbol of every negative literal is less than the level of A.
Example for Stratification

loves(x,y) ← friend(x,y)
loves(x,y) ← enemy(x,y)

enemy(x,y) ← ~friend(x,y)
enemy(x,y) ← friend(x,z),enemy(z,y),~friend(x,y)

friend(x,z) ← friend(x,y),friend(y,z)
friend(a,b) ←
friend(b,c) ←
Counterexample

\[
\begin{align*}
\text{man}(x) & \leftarrow \text{person}(x), \sim \text{woman}(x) \\
\text{woman}(x) & \leftarrow \text{person}(x), \sim \text{man}(x).
\end{align*}
\]
Corollary:
Let P be a stratified normal program. then \(\text{comp}(P) \) has a minimal normal Herbrand model. A normal Herbrand model assigns the equality relation to \("=\)".
Corollary:
Let P be a stratified normal program. then \(\text{comp}(P) \) has a minimal normal Herbrand model. A normal Herbrand model assigns the equality relation to "=".
Corollary:
Let P be a stratified normal program. Then $\text{comp}(P)$ has a minimal normal Herbrand model. A normal Herbrand model assigns the equality relation to "=".
Computational counterpart to models of stratified programmes:

Computing with finite failure
Definition

A normal program is locally stratified if each atom in B_P can be assigned a countable ordinal level such that no atom positively depends on an atom of greater level and negatively depends on an atom of equal or greater level.
even(s(X)) ← ¬even(X).
even(0).

\[B_p:\{\text{even}(0)^0, \text{even}(s(0))^1, \text{even}(s(s(0)))^2, \text{even}(\ldots)^3, \ldots\}\]
Examples for Local Stratification

\[
even(s(X)) \leftarrow \neg \text{even}(X).
\]
\[
even(0).
\]
\[
even(0) \leftarrow q(X).
\]
\[
P_B:
J=\{q(0)^0, \text{even}(0)^1, \text{even}(s(s(0)))^3, \ldots\}
\]
\[
l=\{\text{even}(0)^0, \text{even}(s(s(0)))^2, \ldots\}
\]
Definition

Let \(P \) be a normal program and \(I \) a model. \(I \) is a perfect model for a given level of \(B_P \), if for every other model \(J \), if a positive literal \(p \) is the atom of least level in one model, but not in the other, then \(p \) is in \(J \).

In other words, atoms of higher level are preferred for the perfect model.

Przymusinski: All locally stratified programs have a perfect model, which is independent of the ranking system chosen.