Stable Models

See Bry et al 2007
Controversy

p :- not p.

Justification postulate

- Requests dependable justifications for derived truths.

⇒ Some programs do not have a model (cf above)

Consistency postulate

- Every syntactically correct set of normal clauses is consistent and must therefore have a model.

⇒ \{p\} is a model for the program above
Controversy

\[p : \neg q \]
\[q : \neg p \]

Justification postulate

- Requests dependable justifications for derived truths.

⇒ Both \(\{p\} \) and \(\{q\} \) are reasonable models.

Consistency postulate

- Every syntactically correct set of normal clauses is consistent and must therefore have a model.
Definition: Gelfond-Lifschitz transformation

Let S be a (possibly infinite) set of ground normal clauses, i.e., of formulas of the form

$$A :- L_1, \ldots, L_n$$

where $n \geq 0$ and A is a ground atom and the L_i are ground literals. Let $B \subseteq B_P$.

The Gelfond-Lifschitz transform $GL_B(S)$ of S with respect to B is obtained from S as follows:

1. remove each clause whose antecedent contains a literal $\neg A$ with $A \in B$.
2. remove from the antecedents of the remaining clauses all negative literals.
Example Gelfond-Lifschitz transformation

Program:

\[
\text{brother}(X,Y) :- \text{brother}(X,Z), \text{brother}(Z,Y), \text{not } = (X,Y).
\]
\[
\text{brother}(\text{chico},\text{harpo}).
\]
\[
\text{brother}(\text{harpo},\text{chico}).
\]

Grounded Program:

\[
\text{brother}(\text{chico},\text{chico}) :- \text{brother}(\text{chico},\text{harpo}), \text{brother}(\text{harpo},\text{chico}), \text{not } = (\text{chico},\text{chico})
\]
\[
\text{brother}(\text{chico},\text{harpo}) :- \text{brother}(\text{chico},\text{chico}), \text{brother}(\text{chico},\text{harpo}), \text{not } = (\text{chico},\text{harpo})
\]
\[
\ldots [5 \text{ more}] \ldots
\]
\[
\text{brother}(\text{harpo},\text{harpo}) :- \text{brother}(\text{harpo},\text{chico}), \text{brother}(\text{chico},\text{harpo}), \text{not } = (\text{harpo},\text{harpo})
\]
\[
\text{brother}(\text{chico},\text{harpo}).
\]
\[
\text{brother}(\text{harpo},\text{chico}).
\]
Example Gelfond-Lifschitz transformation

S={
brother(chico,chico) :- brother(chico,harpo),brother(harpo,chico), not =(chico,chico)
brother(chico,harpo) :- brother(chico,chico),brother(chico,harpo), not =(chico,harpo)
…[5 more]…
brother(harpo,harpo) :- brother(harpo,chico), brother(chico,harpo), not =(hharpo,harpo)
brother(chico,harpo).
brother(harpo,chico).
}
Ex 1: B={brother(chico,harpo), brother(harpo,chico), =(chico,chico), =(harpo,harpo)}
GL_B(S)=

brother(chico,chico) :- brother(chico,harpo),brother(harpo,chico), not =(chico,chico)
brother(chico,harpo) :- brother(chico,chico),brother(chico,harpo), not =(chico,harpo)
…[5 more]…
brother(harpo,harpo) :- brother(harpo,chico), brother(chico,harpo), not =(hharpo,harpo)
brother(chico,harpo), brother(harpo,chico). }
Example Gelfond-Lifschitz transformation

\[S = \{
\text{brother(chico, chico)} :- \text{brother(chico, harpo), brother(harpo, chico), not } = (\text{chico, chico})
\]

\[\text{brother(chico, harpo)} :- \text{brother(chico, chico), brother(chico, harpo), not } = (\text{chico, harpo}) \]

…[5 more]…

\[\text{brother(harpo, harpo)} :- \text{brother(harpo, chico), brother(chico, harpo), not } = (\text{harpo, harpo}) \]

\[\text{brother(chico, harpo)}.
\]

\[\text{brother(harpo, chico)}. \}

\]

Ex 1: \(B = \{ \text{brother(chico, harpo), brother(harpo, chico), } = (\text{chico, chico}), = (\text{harpo, harpo}) \} \)

\[\text{GL_B(S)} = \{
\text{brother(chico, chico)} :- \text{brother(chico, harpo), brother(harpo, chico), not } = (\text{chico, chico})
\]

\[\text{brother(chico, harpo)} :- \text{brother(chico, chico), brother(chico, harpo), not } = (\text{chico, harpo}) \]

…[5 more]…

\[\text{brother(harpo, harpo)} :- \text{brother(harpo, chico), brother(chico, harpo), not } = (\text{harpo, harpo}) \]

\[\text{brother(chico, harpo)}, \text{ brother(harpo, chico)}. \} \]
Stable model semantics

Definition (stable model):
Let S be a (possibly infinite) set of ground normal clauses. An Herbrand interpretation B is a stable model of S, iff it is the unique minimal Herbrand model of $GL_B(S)$.

Note:
A stable model of a set S of normal clauses is a stable model of the (possibly infinite) set of ground instances of S.

Lemma: Let S be a set of ground normal clauses and B an Herbrand interpretation. $B \models S$ iff $B \models GL_B(S)$
Stable model semantics

Definition (stable model):
Let S be a (possibly infinite) set of ground normal clauses. An Herbrand interpretation B is a stable model of S, **iff** it is the unique minimal Herbrand model of $GL_B(S)$.

Note:
A stable model of a set S of normal clauses is a stable model of the (possibly infinite) set of ground instances of S.

Lemma: Let S be a set of normal clauses. Each stable model of S is a minimal Herbrand model of S.
Examples

\[S_1 = \{ \]
\[\quad (\ p :\not p \), \]
\[\quad (\ p :\text{true} \) \} \]

Has the stable model \{p\}.

\[\text{GL}_{\{p\}}(S) = \{(p:\text{true})\}, \text{which has the unique minimal model } \{p\} \]

It has no other model.
Examples

\[S_2 = \{ \ (p :\neg p) \} \]

has no stable model.

It has the model \(\{ p \} \), but \(\text{GL}_{\{p\}}(S) = \{ \} \), which has the unique minimal model \(\{ \} \).

It has the model \(\{ \} \), but \(\text{GL}_{\{p\}}(S) = \{ (p:\text{true}) \} \), which has the unique minimal model \(\{ p \} \).
$S_3 = \{
 (q \iff r, \neg p),
 (r \iff s, \neg t),
 (s \iff \text{true})\}

Has the following models:
\{s,r,q\}, \{s,t,q\}, \{s,t,p\}, \ldots

But after applying $GL_B(S)$ p and t cannot be part of the unique minimal model and $\{s,r,q\}$ must be!

Therefore it has the single stable model $\{s,r,q\}$
Examples

\[S_4 = \{ \]
\[(q : - \text{not } p), \]
\[(p : - \text{not } q) \} \]

Has the following models:
- \{q\}, \{p\}

Both are stable models!
Cautious vs brave (skeptical vs credulous)

Logical consequence in stable model semantics

- Cautious (skeptical) entailment:
 - $P \models F$, iff F is true in all stable models of P

- Brave (credulous) entailment:
 - $P \models F$, iff F is true in some stable model of P

- Main interest typically:
 - The different models with their different properties
Observations on stable models

• Stable model semantics coincides with the intuitive understanding based on the „justification postulate“.

• Unintuitive minimal models of the examples turn out not to be stable and the stability criterion retains only those minimal modes that are intuitive.

• A set may have several stable models or exactly one or none

• Each stratifiable set has exactly one stable model.
Example well-founded model

\[S_1 = \{ (p : \neg p), (p : \text{true}) \} \]

Has the well-founded model (\{p\},\{\})
Example well-founded model

\[S_2 = \{ (p \leftarrow \neg p) \} \]

has the well founded model (\{\},\{\})
Examples

\[S_3 = \{ \]
\[\quad (q :- r, \text{not} \ p), \]
\[\quad (r :- s, \text{not} \ t), \]
\[\quad (s :- \text{true}) \} \]

Has the well-founded model \((\{s,r,q\},\{t,p\})\)
Examples

$S_4 = \{
\begin{align*}
& q :- \neg p, \\
& p :- \neg q
\end{align*}
\}\}

Has the well-founded model (\{\},\{\})
Comparison

Stable model semantics

- Justification postulate

Well-founded semantics

- Always one model / consistency postulate

If a rule set is stratifiable, then it has a unique minimal model, which is a stable model and at the same time a total well-founded model.

If a rule set S has a total well-founded model, then this model is also the single stable model of S and vice versa.

If a rule set S has a partial well-founded model I that is not total, then S has either no stable model or more than one. In this case a ground atom is true (or false, respectively) in all stable models of S if and only if it is true in I (or false, respectively).
Stable model semantics

• Justification postulate

Well-founded semantics

• Always one model / consistency postulate

Well-founded semantics convey the „agreement“ of stable models.

Well-founded semantics cannot distinguish between several justifiable models (S_4) and no justifiable model (S_2)
Side remark

\[p :- \text{odd}(X), \neg \text{odd}(X). \]
\[\text{odd}(s(X)) :- \neg \text{odd}(X). \]

Well founded model is:
\[I_{2n} = (\{\text{odd}(s(0)), \text{odd}(s(s(s(0))))), \ldots, \text{odd}(s^{2n-1}(0))\}, \]
\[\{\text{odd}(0), \text{odd}(s(s(0))), \ldots, \text{odd}(s^{2n-2}(0))\}) \]

Fixpoint: \[I_{\omega+1} = I_{\omega} \cup (\{\},\{p\}) \]
d.h. \(\neg p \)

WFS is undecidable, NAF is semi-decidable