Relational Data Model
Overview

- Relational data model;
- Tuples and relations;
- Schemas and instances;
- Named vs. unnamed perspective;
- Relational algebra;
<table>
<thead>
<tr>
<th>Player</th>
<th>Birth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andy</td>
<td>1980</td>
</tr>
<tr>
<td>Wim</td>
<td>1975</td>
</tr>
<tr>
<td>Liam</td>
<td>1985</td>
</tr>
<tr>
<td>Mike</td>
<td>1988</td>
</tr>
<tr>
<td>Bert</td>
<td>1971</td>
</tr>
</tbody>
</table>
Observations

- The **rows** of the table contain pairs occurring in the relation **player**.
- There are two **columns**, labeled respectively by “name” and “birth year”.
- The **values** in each column belong to different **domains** of possible values.
How to specify a relation

1. specifying the names of the columns (also called **fields** or **attributes**);

2. specifying a **domain** of possible values for each column;

3. enumerate all tuples in the relation.

(1)–(2) refer to the **schema** of this relation, while (3) to an **instance**.
Domains and attributes

- A set of **domains** $D_1; D_2$ (sets of values);

- A set of corresponding **domain names** d_1, d_2, \ldots

- A set of **attributes** a_1, a_2, \ldots
Relation Schema and Instances

Tuple: any finite sequence \((v_1, \ldots, v_n)\).
\(n\) is the **arity** of this tuple.

Relation schema:

\[r(a_1:d_1, \ldots, a_n:d_n) \]

where \(n>0\), \(r\) is a relation name, \(a_1, \ldots, a_n\) are distinct attributes, \(d_1, \ldots, d_n\) are domain names.

Relation instance:

finite set of tuples \((v_1, \ldots, v_n)\) of arity \(n\) such that \(v_i \in D_i\) for all \(i\).
Observation

1. The attributes in each column must be unique.

2. A relation is a set. Therefore, when we represent a relation by a table, the order of rows in the table does not matter.

Let us add to this:

3. The order of attributes does not matter.
New notation for tuples

- A tuple is a set of pairs \(\{(a_1, v_1), \ldots, (a_n, v_n)\} \) denoted by \(\{ a_1=v_1, \ldots, a_n=v_n \} \).

- Let \(d_1, \ldots, d_n \) be domain names and \(D_1, \ldots, D_n \) be the corresponding domains.

- The tuple \textbf{conforms} to a relation schema \(r(a_1:d_1, \ldots, a_n:d_n) \) if \(v_i \in D_i \) for all \(i \).
Relational data are structured

Note that in the relational data model tuples stored in a table are **structured**:

- all tuples conform to the same relation schema;
- the values in the same column belong to the same domain.

Untyped perspective: there is a single domain, so the second condition can be dropped.
Typed or untyped?

Consider the relation admire:

<table>
<thead>
<tr>
<th>admirer</th>
<th>admired</th>
</tr>
</thead>
<tbody>
<tr>
<td>wim</td>
<td>andy</td>
</tr>
<tr>
<td>mike</td>
<td>wim</td>
</tr>
<tr>
<td>liam</td>
<td>liam</td>
</tr>
<tr>
<td></td>
<td>arsenal</td>
</tr>
</tbody>
</table>
Database schema and instance

- Relational database instance conforming to a relational database schema S:
 - a mapping I from the relation names of S to relation instances such that
 - for every relation schema $r(a_1:d_1, \ldots, a_n:d_n)$ in S
 - the relation instance $I(r)$ conforms to this relation schema.
- No attributes

- a tuple is simply a **sequence** \((v_1, \ldots, v_n)\) of values.

- The components of tuples can therefore be identified by their **position** in the tuple.
Introduce a collection of attributes #1, #2, …,

identify tuple \((v_1, \ldots, v_n)\) with the tuple
\[
\{ \#1 = v_1, \ldots, \#n = v_n \}
\]

Likewise, identify relation schema \(r(d_1, \ldots, d_n)\) with
\(r(\#1:d_1, \ldots, \#n:d_n)\).
1. Can **define** new relations from existing ones;
2. Uses a collection of **operations** on relations to do so.
\{ (v_{11}, \ldots, v_{1n}), \\
\ldots \\
(v_{k1}, \ldots, v_{kn}) \}
\[R_1 \cup R_2 = \{ (c_1, \ldots, c_k) \mid (c_1, \ldots, c_k) \in R_1 \text{ or } (c_1, \ldots, c_k) \in R_2 \} \]
Set difference

\[R_1 - R_2 = \{(c_1, \ldots, c_k) \mid (c_1, \ldots, c_k) \in R_1 \text{ and } (c_1, \ldots, c_k) \notin R_2 \}\]
Cartesian product

\[R_1 \times R_2 = \{(c_1, \ldots, c_k, d_1, \ldots, d_m) \mid (c_1, \ldots, c_k) \in R_1 \text{ and } (d_1, \ldots, d_m) \in R_2 \}. \]
Let now R be a relation of arity k and i_1, \ldots, i_m be numbers in \{1, \ldots, k\}.

$$\pi_{i_1, \ldots, i_m}(R) = \{(c_{i_1}, \ldots, c_{i_m}) \mid (c_1, \ldots, c_k) \in R\}.$$

We say that $\pi_{i_1, \ldots, i_m}(R)$ is obtained from R by projection (on arguments i_1, \ldots, i_m).
Assume **formulas on domains** with “variables” #1, #2,

For example, #1 = #2.

\[
\sigma_F (R) = \{(c_1, \ldots, c_k) \mid
\begin{align*}
(c_1, \ldots, c_k) &\in R \text{ and } \\
F &\text{ holds on } (c_1, \ldots, c_k) \}
\end{align*}
\]
Overview

- Relational algebra, named perspective
- SQL
- Integrity constraints
- (Aggregates and grouping)
\[
\begin{align*}
&\{ \{ a_1 = v_{11}, \ldots, a_n = v_{1n} \}, \\
&\ldots \ldots \ldots \\
&\{ a_1 = v_{k1}, \ldots, a_n = v_{kn} \} \}
\end{align*}
\]
Let R_1, R_2 be relations with the same attributes.

$$R_1 \cup R_2 = \{ t \mid t \in R_1 \text{ or } t \in R_2 \}$$
Union, example

R_1

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
</tbody>
</table>

R_2

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
</tr>
</tbody>
</table>

$R_1 \cup R_2$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
</tr>
</tbody>
</table>
Renaming

Let R be a relation whose set of attributes is $a_1, \ldots, a_n, c_1, \ldots, c_m$.

Let b_1, \ldots, b_n be distinct attributes such that
\[
\{b_1, \ldots, b_n\} \cap \{c_1, \ldots, c_m\} = \emptyset
\]

Then
\[
\rho_{a_1 \mapsto b_1, \ldots, a_n \mapsto b_n}(R) = \left\{ \{b_1 = v_1, \ldots, b_n = v_n, c_1 = w_1, \ldots, c_m = w_m\} \mid \left\{a_1 = v_1, \ldots, a_n = v_n, c_1 = w_1, \ldots, c_m = w_m\right\} \in R \right\}
\]
SQL is based on set and relational operations with certain modifications and enhancements.

A typical SQL query has the form:

```
select a_1, \ldots, a_n
from R_1, \ldots, R_m
where P
```

This query is equivalent to relational algebra expression:

```
\pi_{a_1, \ldots, a_n} (\sigma_P (R_1 \times \ldots \times R_m))
```

The result of an SQL query is a relation.

Exceptions?
Integrity constraints

- Domain constraints.
- Key constraints.
- Foreign key constraints.

- More general, defined constraints.

- How to translate them?
Query language

Allow one to define:

- Relation and database schemas;
- Relations through our relations;
- Integrity constraints;
- Updates.