1 Semantic Search

credit:
Maciej Janik
based on material of:
Tim Finin and Mathieu d’Aquin
1 Semantic Search
Types of semantic search engines

- Semantically-enhanced Search
 - Yahoo! SearchMonkey, Google squared (2009 - 2011)
- NLP-based Search
 - MetaWeb Freebase, Powerset,...
- Semantic-NLP-based Search
 - hakia, Cognition, ...
- Computational-NLP-based Search
 - True Knowledge, Wolfram Alpha, ...
- Semantic Web Search (search for ontologies)
 - Swoogle, Sindice, SWSE, Falcon-S, Watson, Shoe, ...
Semantic data vs. application needs

Data:

Applications:

- Discover how entities are related
- Browse ontologies
- Answer NLP questions
- Query multiple (distributed) knowledge bases
- Find and rank (relevant) ontologies

Gateway to semantic data: dynamically

- retrieving
- exploiting
- combining relevant semantic resources
Semantic data vs. application needs

Data:

Applications:

- Discover how entities are related
- Browse ontologies
- Answer NLP questions
- Query multiple (distributed) knowledge bases
- Find and rank (relevant) ontologies

Gateway to semantic data: dynamically

- retrieving
- exploiting
- combining

relevant semantic resources
Semantic data vs. application needs

Data:

- Applications:
 - Discover how entities are related
 - Browse ontologies
 - Answer NLP questions
 - Query multiple (distributed) knowledge bases
 - Find and rank (relevant) ontologies

→ Gateway to semantic data: dynamically

- retrieving
- exploiting
- combining
relevant semantic resources
Semantic data vs. application needs

Data:

Applications:

- Discover how entities are related
- Browse ontologies
- Answer NLP questions
- Query multiple (distributed) knowledge bases
- Find and rank (relevant) ontologies

Gateway to semantic data: dynamically

- retrieving
- exploiting
- combining

relevant semantic resources
Semantic data vs. application needs

Data:

- Discover how entities are related
- Browse ontologies
- Answer NLP questions
- Query multiple (distributed) knowledge bases

Applications:

- Find and rank (relevant) ontologies

→ Gateway to semantic data: dynamically

- retrieving
- exploiting
- combining

relevant semantic resources
Semantic data vs. application needs

Data:

- Discover how entities are related
- Browse ontologies
- Answer NLP questions
- Query multiple (distributed) knowledge bases
- Find and rank (relevant) ontologies

Gateway to semantic data: dynamically
- retrieving
- exploiting
- combining relevant semantic resources
Semantic data vs. application needs

Data:

Applications:

- Discover how entities are related
- Browse ontologies
- Answer NLP questions
- Query multiple (distributed) knowledge bases
- Find and rank (relevant) ontologies

→ Gateway to semantic data: dynamically
 - retrieving
 - exploiting
 - combining relevant semantic resources
Semantic Search? Finding Ontologies?

- For reuse
 - To build upon what exists
 - To adopt what is used in practice
 - Not to re-invent the wheel
 - Because it is simpler than building from scratch
- For applications
 - Because semantic applications need knowledge
 - Because knowledge is hard to acquire
 - Because some scenarios require to gather this knowledge at run-time
 - Because in some scenarios, the more there is, the better
Swoogle – the first semantic Web gateway

Data:

Applications:

- Discover how entities are related
- Browse ontologies
- Answer NLP questions
- Query multiple (distributed) knowledge bases
- Find and rank (relevant) ontologies

→ Gateway to semantic data:
Swoogle – the first semantic Web gateway

Applications:

- Discover how entities are related
- Browse ontologies
- Answer NLP questions
- Query multiple (distributed) knowledge bases
- Find and rank (relevant) ontologies

Gateway to semantic data:
Swoogle – the first semantic Web gateway

Data:

Applications:

- Discover how entities are related
- Browse ontologies
- Answer NLP questions
- Query multiple (distributed) knowledge bases
- Find and rank (relevant) ontologies

→ Gateway to semantic data:
Swoogle – the first semantic Web gateway

Data:

Applications:
- Discover how entities are related
- Browse ontologies
- Answer NLP questions
- Query multiple (distributed) knowledge bases
- Find and rank (relevant) ontologies

Gateway to semantic data:
Swoogle – the first semantic Web gateway

Data:

Applications:

- Discover how entities are related
- Browse ontologies
- Answer NLP questions
- Query multiple (distributed) knowledge bases
- Find and rank (relevant) ontologies

→ Gateway to semantic data:
Swoogle – the first semantic Web gateway

Data:

Applications:

- Discover how entities are related
- Browse ontologies
- Answer NLP questions
- Query multiple (distributed) knowledge bases
- Find and rank (relevant) ontologies

Gateway to semantic data:
Swoogle – the first semantic Web gateway

Data:

- Musicbrainz
- Audioscrobbler
- DBpedia
- GeoNames
- BBC Later+TOP
- BBC John Peel
- Magnatune
- Doap-space
- Flickr exporter
- qdoc
- ECS Southampton
- SIOC profiles
- DBLP Berlin
- RDF Book Mashup
- W3C WordNet
- Geo-Track
- Eurostat
- OpenCyc
- Project Gutenberg
- DBLP Hannover
- RKB Explorer
- OpenGuide
- GW Conference Corpus
- GWDG

Applications:

- Discover how entities are related
- Browse ontologies
- Answer NLP questions
- Query multiple (distributed) knowledge bases
- Find and rank (relevant) ontologies

→ Gateway to semantic data:
Created in 2004
Crawls and discovers documents in RDF, OWL
Indexing and retrieval system
Search for Semantic Web Documents (SWD)
 Ontologies
 Instance data
Swoogle — search and metadata for the semantic web

- Created in 2004
- Crawls and discovers documents in RDF, OWL
- Indexing and retrieval system
- Search for Semantic Web Documents (SWD)
 - Ontologies
 - Instance data
How Swoogle can be used?

- Find ontologies
 - Containing keywords, terms, concepts
 - Similar to ‘http://myontology.org/…’
 - Used to describe document X (directly or indirectly)
- Find semantic Web documents
 - Containing keywords, terms ...
 - Used or created by specific institution
- Browse
 - Ontologies using specific topic hierarchy
 - Ontology metadata
 - Entities and navigate between them
Swoogle architecture

- Uses Google APIs to discover URIs
- Crawls using these URIs as seeds
- Allows users to submit URIs
- Offers multiple interfaces
- Generates Metadata
 - Used for ranking
 - Basic RDF statistics and ontology annotation.
 - RDF Statistics (determine SWD or SWO)
 - Ontology annotation
Limitations of Swoogle

- No quality control mechanisms
 - Many ontologies are duplicated
 - No quality information provided
- Limited Query/Search mechanisms
- No support for **relations between ontologies**
 - Duplication, incompatibility (contradiction), modularization, versioning, etc.
→ **computational** knowledge engine

▶ often referred to as “semantic search engine”

▶ the purpose is **not** to find appropriate Web pages as result

 ▶ Instead: *Compute* a result (an answer based on the content of Web sites) to a query.

→ achieved by composing results
Motivation: conventional search engines are no longer appropriate to provide high quality results.

- expect of matching occurrences of words (terms), the idea is to take the meaning of terms into account.

Benefits of “semantic search”:
- Enables semantic understanding of users
- Accuracy of results
- Focus (of the result) is on answering a question rather than on finding relevant Web pages (cf. like in Wolfram Alpha)
Structured knowledge base for NLP-based Search: Freebase

- Freebase: collaborative knowledge base

- online collection of structured data harvested from many sources, including individual ‘wiki’ contributions
 - data is harvested from sources like Wikipedia, MusicBrainz.

- the data model is a graph

- Freebase follows the principle of *folksonomies*, in which people can just add new terms (topics) like tags.

- Different to the Wiki-like approach ...
 - users can create their own types
 - but there is some control mechanism by Freebase
Semantically-enhanced Search

- Idea: Use structured data (in search engines) to make results more useful.

- Examples: Yahoo! SearchMonkey

- Typically, additional structure and information is provided, e.g., in terms of microformats
 - see schema.org