
Proseminar Multimedia-Databases & Retrieval:
An introduction to METIS - a Flexible Database

Foundation for Uni�ed Media Management

Sönke Greve

Institute For Web Science And Technologies
University of Koblenz-Landau

Abstract. This paper introduces the idea, architecture and purpose
of METIS which is a �exible and highly costumizable multimedia
database. It is the result of pushing a truly multimedia approach in
the landscape of mostly single-media oriented databases. METIS can be
depicted as a comprehensive system to all kinds of media, their metadata
attributes, internal connections and requirements in feature-generation
and comparison. What de�nes METIS is the elaborate and clean
structure it o�ers for dealing with any given type of media. It is not
a system that implements new storage or user interaction approaches as
they can set up individually. The given structure can easily be adjusted
to meet domain speci�c needs without loosing its ability to extend to
new non-domain speci�c media types.

1 Introduction

Most of the so called �multimedia databases� that currently exist focus on the
management of a single media type, such as videos [2, 4, 5] , images [3, 8, 7]
or audio. Each of those systems deals with an own heterogeneous model when
describing or indexing its contents. Combining several of those systems in one
environment doesn't lead to a fully integrated and uni�ed media management
system. It rather creates parallel isolated silos of media under one hood. Querying
such a system or comparing data across the silos' borders must be implemented
uniquely for each of the silos to appear as single system. METIS also requires
speci�c implementations for speci�c media types but all is dealt with in a
uni�ed manner in a single and fully integrated system. This results in three
main bene�ts:

1. querying the database is uni�ed for each media type
2. modelling is purged when dealing with multiple media types due to a media

independent architecture.
3. new media types can be integrated at relatively low e�orts

These bene�ts are provided through the design of the METIS system core
which is created regarding four main concepts. First there is the abstract
data model embracing all types of media content. Second are the CMOs
(Complex Media Objects) which are template-based media-containers for the use
of composed types like websites or multimedia document formats such as MHEG,
SMIL, SVG [6] or even upcoming standards. Third is a highly customisable
functions and operators repository that is usually application speci�c. Therefore
it can be extended through loadable Java classes. And �nally there is the
query processor enabling a search for semantic classi�cation of media, high-level
characteristics, low-level features and the relationship to other media objects.

METIS carries the highly generic and customisable concept to all levels of
its architecture. There is a visualisation layer based on eXtensible Server Pages
(XSP) and the Apache Cocoon framework. It is extended to a rendering pipeline
via XHTML-templates and XSLT stylesheets in order to map non-static core
functionality to the user interface. At the other end of the architecture there
is the persistence abstraction layer representing the storage back-end of the
system. It is adaptable towards di�erent storage techniques that are provided
through classes implementing a database manager interface. These classes can be
used to de�ne your own storage solutions or use commonly supported concepts
like SQL92 compliant relational databases as well as �le system based methods
using XML �les. In order to reduce the administrative complexity of such
a highly customisable system METIS introduced the idea of semantic packs.
Semantic packs can be interpreted as saved con�gurations of an application
speci�c solution concerning all level of METIS' architecture.

2

In the following the METIS database architecture is described in detail.
Section 2.1 enlightens the core's features. The system's front- and back-end
solutions are depicted in 2.2 about the persistence abstraction layer and 2.3
about the visualisation layer. Section 2.4 deals with the concept of the semantic
packs. Section 3 and 4 display a brief view on open issues as well as a �nal
statement about the system.

2 The METIS architecture
This section introduces the architectural elements of the METIS multimedia
database depicted in �gure 1. Paragraph 2.1 deals with core components of
METIS. These are the data model, complex media objects, a functions and
operators repository and the query processor. In 2.2 the storage back-end
called persistence abstraction layer is presented and 2.3 explains the idea of
user-interaction via the visualisation layer. Finally paragraph 2.4 shows the use
of semantic packs.

Persistence Abstraction Layerstorage

- data model

- complex media objects

- functions and operators repository

- query processor

METIS core

system

Visualisation Layeruser interface

Semantic Packs

loaded into

Fig. 1. METIS architecture

2.1 The METIS core
This section provides an insight on the core of the METIS system emphasising
the �exibility and customisability of the framework. Regarding �exibility the core
is implemented as a Java servlet and distributed as a web archive (WAR-�le).
This enables platform- as well as environment-independence of the system.
Each web-server capable of treating Java servlets can be used as a distribution
environment. The founders at the Research Studios Austria1 started on top of
the Apache Tomcat project.
1 http://www.researchstudio.at

3

Data Model The internal representation and management of media as shown
in �gure 2 has to meet two major requirements.

1. deal with any kind of media
2. adapt any kind of application demands

MT MT

MT

MT

SMO

multiple

inheritance

MA

MA

Model

Instance

type specific configuration

(e.g. max.value)

programmable type

implementations

Av

Av

MI

MI loc

HTTP

Custom

multiple instances for

alternative media

media location

transparency

1..*

0..1

T

loc

MT media type

MA metadata attribute

T metadata type

SMO single media object

Av metadata attribute value

MI media instance

media locator

Legend

multiple

inheritance

multiple

inheritance

multiple

instantiation

Fig. 2. The METIS core data model

Therefore media within METIS is represented by an abstract type called
single media object (SMO) which basically is the ID of a database entry. Any
SMO is connected to one or many media instances that carry attributes such
as size, encoding format, bit rate (etc.). Each media instance is connected to
a single media locator. They address the actual data stored in a �le system, a
web server or a database. This structure provides the ability to gather di�erent
physical manifestations of media under one logical representation. It can be
used for load balancing, delivering the data with the best �tting resolution or
considering bandwidth qualities when deploying an instance.

The semantic classi�cation in METIS is done via the assignment of an
arbitrary number of media types to each SMO. Those media types are collections
of metadata attributes and can inherit from each other. The used concept of
inheritance contradicts the idea of multiple assignments. This change of style
is tolerated due to the advantage of assigning metadata attributes of parallel
taxonomies to a single object. The authors of METIS [6] chose this kind of
realisation in order to avoid arti�cial, hybrid media types. Metadata attributes
are of di�erent metadata types which can be freely de�ned as Java classes. The
connection between a metadata attribute and a media type can be con�gured

4

with a speci�c cardinality stating the requirement or limitation of a number of
metadata attributes within a single media type.

Another characteristic for classifying media is not only attribute- but
connection-based. Therefore METIS supports association types which are freely
de�nable Java classes. Those association types coexist with the metadata
attributes within amedia type. Connected SMOs must implement the samemedia
type containing the speci�c association type. The cardinality is supported by this
concept, too.

<smil>

<head>[...]</head>

<body>

[...]
<img src=“…/MetisDownloadServlet?id=..."
type="image" dur="3s" region="image"/>
[...]
<img src=“…/MetisDownloadServlet?id=..."
type="image" dur="3s" region="image"/>
[...]
</body>
</smil>

METIS

TemplateProcessor

XSLT

<smil>

<head>[...]</head>

<body xmlns:template="http://www.researchstudio

.at/xml/ns/metis/template“>

[...]

<template:Placeholder name=“my_logo“

type="image" dur="3s" region="image" />
[...]

<template:Placeholder name=“large_picture“

 type="image" dur="3s" region="image" />
[...]

</body>

</smil>

XSL

stylesheet

SMO
SMO

CMO

Template

(source)

Result

XSL

stylesheetXSL
stylesheet

chosen corresponding to template type

(e.g. SMIL, XHTML, etc.)

XML based template

(e.g. SMIL, XHTML, etc.)

resolved at

request-time

SMO

SMO single media object

Legend

complex media objectCMO

large_picture
my_logo

Fig. 3. Complex Media Objects

Complex Media Objects An extension of the data model is made by means
of CMOs (complex media objects). CMO's are very similar to SMOs as they
instantiate media types. They are assigned attribute values and may participate
in associations. But their main use is to serve as containers for SMOs what makes
them a representation of multimedia documents within METIS. Following again
the concept of customisability and �exibility it was avoided to declare another
multimedia document format but to support existing or even upcoming ones with
a simple template mechanism. An example for this mechanism can be found in
�gure 3.

Templates are �rst-class objects represented by XML documents and may
be shared between multiple CMO's. Within those templates placeholders mark
the media content used within. Requesting a CMO at runtime the placeholders
are replaced by format-compliant references via an XSLT stylesheet representing
the used SMO's. This way it �rst doesn't really matter if one wants to create
a based on MHEG, SMIL, SVG or some new document type alike. And second

5

this technique re�ects real world media productions very well where tasks of
design and content management are separated. The limitations of this template
mechanism are the unknown de�nitions within the template. METIS is unaware
of temporal or spatial resolution of the used SMO's and can't therefore be
queried against them.

Function Repository

MT TF
similarity

(,)MT

TF
addition

(, ,)T T T

TF
extraction

()MT

JAVA

CLASS

JAVA

CLASS

JAVA

CLASS

parameters and return

values are instances of

metadata types or media

types

function

implementations are

dynamically loaded

JAVA classes

functions are named

Legend

MT media type

T metadata type

Fig. 4. The METIS functions and operators repository

Functions and Operators The functionality and handling of data in METIS
is provided by a functions and operators repository depicted in �gure 4. As this
part of multimedia management, comparison, sorting and ordering is usually
explicitly connected to a speci�c application domain it doesn't su�ce to o�er
a static set of prede�ned functions (e.g. a philatelic database uses di�erent
similarity measures for its stamps than a passport photo database providing
face recognition support). Therefore an extendable framework was integrated
into the METIS core. Functions are implemented by loadable Java classes. These
function implementations have full access to all resources within the database
including the data model. For example the input parameter of a function could
be a SMO classi�ed by the assignment of a media type as a result. In other
words functions can process any type of SMO, CMO or instances of metadata
types resulting in a media object or metadata type instance.

Query Processor The query processor provided in METIS is capable of
hybrid search for SMO's and CMO's through a simple query language. The
media's semantic classi�cation, high-level characteristics, low-level features and
relationship to other media can be taken into account. The selection is done by
testing all media objects against a given condition. A condition consists of nested
conjunctions and disjunctions of selected predicates. So objects can be requested

6

belonging to a kind (e.g. single or complex), a media type they instantiate
(directly or through inheritance), the values of their metadata attributes
(compared by functions of the extended repository) or their participation in
associations.

media type selection

feature selection

metadata attribute selection

query results

Fig. 5. The METIS web front-end with a query example

Figure 5 depicts the selection of predicates. The left displays the integrated
graphical tool for the formulation of requests. The right shows a result set of
SMO's. The expressiveness is still limited. For example METIS doesn't support
joins between media objects at its current state. Most of the limitations can
be by-passed by hard-coding the functionality in the functions and operators
repository. This is nothing else than a workaround at �rst hand but an indication
for the depth of �exibility of METIS on the second. Queries are persistent objects
and can be stored for repetitive use.

2.2 Persistence Abstraction Layer
Though science is usually based on theoretical and/or idealised models of reality
it sometimes has to deal with less objective problems - typically the human
factor. The creators of METIS had to face this subject when negotiating with
potential commercial project partners. Since the METIS structure is fully object

7

oriented the �rst prototypes were implemented in a object database system. That
fact found few acceptance on the commercial side. The bias on this topic is chie�y
based on the strong con�dence in relational database technology in this sector
than on technical issues. Another argument is that relational databases are often
already present within enterprises. Therefore the people are already experienced
on this kind of software and there is no or only few need for new licenses. To
meet the resulting requirements and with regard to the �exibility paradigm the
storage interface was re-implemented including a persistence abstraction layer.

All persistent objects in METIS are now derived from a persistent object
base class. This class demands store, update and delete functions for each of its
subclasses. Those functions do not directly access the storage layer, but rather
an abstract database manager interface. This interface handles transactions,
commits and rollbacks. This architecture enables a custom support for di�erent
storage back-ends. Every kind of storage must be implemented in a database
manager class. Implementations for a serialised XML-based �le system storage
or SQL92 compliant database systems already exist. They can easily be adapted
to other relational database systems ranging from low-cost systems to large-scale
back-ends suitable for commercial use.

Furthermore the persistence abstraction layer provides a framework for the
integration of new media locators. They are implemented via Java classes
themselves implementing interfaces for the di�erent kinds of storage locations
(e.g. supporting read-only, read-write or random access).

2.3 Visualisation Layer

METIS is published with an own web-based administration front-end. It is based
on a con�gurable rendering pipeline using a series of XSLT transformations.
This provides �exibility in the visualisation layer. The need for �exibility in this
place can have di�erent reasons. One is of course the graphical representation like
matching certain styleguides or corporate identity speci�cations. Another reason
can be the user-dependant interface behaviour or multilingual adaptations of the
system's surface.

COCOON

production presentation

XSP
(template with

custom tags)

XSLT

(logicsheet)

XSLT

(general

styles)

XSP
(no custom

tags)

HTML
(result)

L S

METIS

data

C

JAVA
Servlet

CSS

Cascading

Style Sheets

S
JS

JavaScript

Files

L

Logic

Legend

L StyleS C Content

Fig. 6. The METIS rendering pipeline / template processor

8

In order to generate elaborate graphical design, compatible with di�erent
browsers it is necessary to create highly complex HTML code. To avoid
limitations to these requirements a complex rendering pipeline was created. It
is based on eXtensible Server Pages (similar to Java Server Pages) that are
processed by the Apache Cocoon Framework. Starting with the XSPs (without
custom tags) in �gure 6 the right-hand side equals the process of building general
XSP web applications. The created Java Servlet queries the METIS database and
generates the �nal HTML output as well as required documents like JavaScript-
and CSS-Files. To enable non-static solutions the left-hand side describes the
way the XSP-document is generated. Web-developers are given the possibility
to create templates including custom tags and additional replacement directives
stored in XSLT logic- and stylesheets. This way creating a domain-speci�c
GUI using the pipeline becomes a bit more complex than just o�ering a set
of prede�ned METIS components for the use within XSP applications. But as
it is hard to predict all required functionality the METIS components would
have to o�er the chosen pipeline architecture o�ers the highest level of creative
freedom.

2.4 Semantic Packs

Keeping everything �exible and customisable creates two major problems. The
�rst one is the complexity of creating a domain speci�c solution from the scratch.
Each layer or part of the system core must be customised to meet the domain
speci�c requirements. The second is the lack of de�ned semantics in declared
types, attributes or objects. This is similar to XML documents wherein tags
with the same name yet completely di�erent meanings may be found in a single
document.

To face these di�culties so called semantic packs were introduced at a certain
stage of the METIS development. They establish spaces of semantically related
METIS objects, analogous to XML namespaces. All object names in METIS
are pre�xed by the URI of the semantic pack they belong to. A graphical
representation of a namespace pre�x is indicated in the lower box of �gure 7.
Semantic packs also include de�nitions of METIS objects, able to be equipped
with metadata attributes, functions, media types, associations and dynamically
loaded Java classes. Those classes can contain simple data type implementations,
media locators, feature extractors and even templates for the web front-end. In
other words semantic packs enable pre-packaged, domain speci�c solutions for
METIS that can easily be installed and reduce the administrative complexity.
Those con�guration-�les of METIS are hierarchically organised and can make
use of other semantic packs. For example most semantic packs will make use
of the METIS base semantic pack, which contains primitive data types, such
as string, integer or date, required by almost any application. The packs come
as Java archives (JAR) that enable the authentication of their origins and the
prevention of malicious code.

9

MT

MA

MT

MT

ID3v2

MA

MA

v 1.3

MT

MT

PortalUserProfile

MA

MA

MA

v 1.0

BASE

v 2.3

T

T

T

T

T

T

T

plugin data

models

may build on

each other

are versioned and

updatable at

runtime

SMO

may contain instances as

"premodelled" data

http://www.researchstudio.at/xml/

ns/metis/core/sempack/base

are uniquely

identified by a URI

reference

Fig. 7. Semantic Packs in METIS

3 Future Work

The authors of METIS point out 5 essential construction sites of their system:

Indexing
The indexing capabilities of METIS are currently very low. The integration
of an indexing framework supporting arbitrary unordered, ordered and
multidimensional index structures is under development. The goal is a more
e�cient querying of media.

Query Language
The current query language integrated in METIS is limited as depicted in
Section 2.1 (Query Processor). It is strived towards relevant multimedia querying
standards, such as SQL/MM [1] .

Version Control
In a multimedia production cycle it is necessary to keep track of di�erent versions
of the same media and its metadata. Versioning support for media objects is to
be implemented in future releases.

10

User Management
There doesn't exist any security or user management support in METIS. This
is essential for a commercial use of databases where multiple users, teams or
companies access media material on a single server.

Caching & Networking
By optimising the persistence abstraction layer it is planned to improve caching
techniques and investigated how distributed instances of METIS can work
together on the basis of a peer-to-peer network (multi-server support).

4 Conclusion

METIS is pretty much a one-of-a-kind solution. There are few other databases
following this concept of true uni�ed multimedia management [6] . In terms of
�exibility and customisability METIS is a de�nite advancement to them.

A topic almost ignored in the presentation papers of METIS is the
performance which is - beside model mapping capabilities - always an important
factor on the success of a database system. The architecture and data model
look pretty smooth but there is no data available comparing a single-media
database to a domain speci�c implementation of METIS. Its very complex and
comprehensive structure as well as its implementation in Java might be paid with
an immense loss of performance compared to uniquely developed domain speci�c
solutions crossing the borders of some media silos. This must be especially taken
into account when dealing with computer graphic constructs or data that bene�t
from the use of hardware acceleration.

The missing user and rights management makes the METIS version described
in [6] almost useless for commercial applications. Testing future releases stays
interesting though. Beyond that the ability to model almost every requirement
of an application within a uni�ed environment makes METIS a very powerful
tool. METIS is currently applied in several projects, e.g. a news video database
that automatically classi�es the corresponding audio streams. Future projects
and �eld studies will reveal the true power of METIS.

11

Bibliography

[1] ISO/IEC 13249-1:2000. Information technology - Database languages - SQL
Multimedia and Application Packages - Part 1: Framework. International
Organization for Standardization, Geneva, Switzerland, 2000.

[2] E. Oomoto and K. Tanaka. OVID: Design and implementation of a
video-object database system. IEEE Transactions on Knowledge and Data
Engineering, 5(4), 1993.

[3] Myron Flickner, Harpreet S. Sawhney, Jonathan Ashley, Qian Huang, Byron
Dom, Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic, David
Steele, and Peter Yanker. Query by image and video content: The qbic
system. IEEE Computer, 28(9):23�32, 1995.

[4] Harald Kosch, László Böszörményi, Alexander Bachlechner, Christian Hanin,
Christian Hofbauer, Margit Lang, Carmen Riedler, and Roland Tusch.
Smooth - a distributed multimedia database system. In VLDB, pages
713�714, 2001.

[5] Jobst Lö�er, Konstantin Biatov, Christian Eckes, and Joachim Köhler.
I�nder: an mpeg-7-based retrieval system for distributed multimedia content.
In ACM Multimedia, pages 431�435, 2002.

[6] Niko Popitsch, Ross King, and Gerd Utz Westermann. Metis: a �exible
foundation for the uni�ed management of multimedia assets. Multimedia
Tools and Applications, 33(3):325�349, 6 2007.

[7] Vincent Oria, M. Tamer Özsu, Paul Iglinski, Bing Xu, and L. Irene Cheng.
Disima: An object-oriented approach to developing an image database
system. In ICDE, pages 672�673, 2000.

[8] Michael Ortega, Yong Rui, Kaushik Chakrabarti, Kriengkrai Porkaew,
Sharad Mehrotra, and Thomas S. Huang. Supporting ranked boolean
similarity queries in mars. IEEE Trans. Knowl. Data Eng., 10(6):905�925,
1998.

