Sie sind hier

Data Science

Lecture:
2:15 pm - 3:45 pm G310

Topics that will be covered in this course:

  • Data Collection Methods and Ethics
  • Data Analytics: Mainly Statistics & Probability Theory (Descriptive Statistic, Bayesian versus Frequentist thinking, Statistical Inference, Causal Inference)
  • Data Visualizations, Interpretations and Data Story Telling

Exercise:
4:00 pm - 5:30pm E313

  • You will get hands-on experience and learn practical data science stuff (e.g. how to do data science in python)
  • Paper and pen exercises, small programming exercises, reading homework.
  • Try to solve the problems yourself before the exercise class (self-assessment: how well have I understood the content of the lecture? Use exercise class to ask open questions). You don’t have to hand in exercise sheets. But bring them to class, we correct them together during class.

 

Prerequisites:
A basic understanding of programming that will allow you to manipulate data and implement basic algorithms. Python will be the “official” programming language used during the hands-on sessions. We will use IPython Notebook as the environment. A basic understanding of statistics and algebra will help too.
 

Books & Learning Material:

  • Think Stats Probability and Statistics for Programmers by Downey (available for FREE as pdf)
  • Grinstead and Snell’s Introduction to Probability (FREE pdf) or A Modern Introduction to Probability and Statistics (pdf)
  • Dive into Python (FREE) or Python Data Science Handbook by VanderPlas (buy online ~30 EURpdf)
  • Storytelling With Data: A Data Visualization Guide for Business Professionals by Nussbaumer Knaflic (~30 EUR
  • Computer Age Statistical Inference by Efron and Hastie (FREE pdf)
  • Pattern Recognition and Machine Learning by Bishop (Springer, ~75 EUR)

JProf. Dr. Claudia Wagner

clwagner@uni-koblenz.de