Offer for internship @ Novartis

- Topic: Semantic Web technologies
 - Java, Sesame, Jena, Oracle Spatial, Allegro Graph
- Location: Basel, Switzerland
- Remuneration: ~ 2000 + 500 CHF
Information Extraction
(~20 slides from E. Agichtein)

Steffen Staab

Semantic Web
“Unstructured” text data is the **primary** form of human-generated information
- Blogs, web pages, news, scientific literature, online reviews, …
- The techniques discussed here are complimentary to structured object extraction methods

Need to extract **structured** information to effectively manage, search, and mine the data
The annotation problem in 4 cartoons

We have a new invention. It is called the Semantic Web!
The annotation problem from a scientific point of view

It will be successful if everybody annotates his/her webpage.
The annotation problem in practice

So, we need to annotate all our pages!

That sounds like hard work!

Annotating?
The vicious cycle

Sorry boss, but we have an important appointment...

LET'S RUN!!!
Information Extraction: mature, but active research area
- Intersection of Computational Linguistics, Machine Learning, Data mining, Databases, and Information Retrieval
- Traditional focus on accuracy of extraction
For years, Microsoft Corporation CEO Bill Gates was against open source. But today he appears to have changed his mind. "We can be open source. We love the concept of shared source," said Bill Veghte, a Microsoft VP. "That's a super-important shift for us in terms of code access."

Richard Stallman, founder of the Free Software Foundation, countered saying…

Select Name
From PEOPLE
Where Organization = ‘Microsoft’

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill Gates</td>
<td>CEO</td>
<td>Microsoft</td>
</tr>
<tr>
<td>Bill Veghte</td>
<td>VP</td>
<td>Microsoft</td>
</tr>
<tr>
<td>Richard Stallman</td>
<td>Founder</td>
<td>Free Soft.</td>
</tr>
</tbody>
</table>

Bill Gates
Bill Veghte

(from William Cohen’s IE tutorial, 2003)
Outline

- Information Extraction Tasks
 - Entity tagging
 - Relation extraction
 - Event extraction

- Scaling up Information Extraction
 - Focus on scaling up to large collections (where data mining can be most beneficial)
 - Other dimensions of scalability
Information Extraction Tasks

- Extracting entities and relations: this talk
 - **Entities**: named (e.g., Person) and generic (e.g., disease name)
 - **Relations**: entities related in a predefined way (e.g., Location of a Disease outbreak, or a CEO of a Company)
 - **Events**: can be composed from multiple relation tuples

- Common extraction subtasks:
 - **Preprocess**: sentence chunking, syntactic parsing, morphological analysis
 - Create **rules or extraction patterns**: hand-coded, machine learning, and hybrid
 - Apply extraction patterns or rules to **extract** new information
 - Postprocess and **integrate** information
 - Co-reference resolution, deduplication, disambiguation
Entity Tagging

- Identifying mentions of entities (e.g., person names, locations, companies) in text
 - MUC (1997): Person, Location, Organization, Date/Time/Currency
 - ACE (2005): more than 100 more specific types

- Hand-coded vs. Machine Learning approaches

- Best approach depends on entity type and domain:
 - Closed class (e.g., geographical locations, disease names, gene & protein names): hand coded + dictionaries
 - Syntactic (e.g., phone numbers, zip codes): regular expressions
 - Semantic (e.g., person and company names): mixture of context, syntactic features, dictionaries, heuristics, etc.
 - “Almost solved” for common/typical entity types
Example: Extracting Entities from Text

- Useful for data warehousing, data cleaning, web data integration

Address

<table>
<thead>
<tr>
<th>House number</th>
<th>Building</th>
<th>Road</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>4089</td>
<td>Whispering Pines</td>
<td>Nobel Drive</td>
<td>San Diego</td>
<td>CA</td>
<td>92122</td>
</tr>
</tbody>
</table>

Citation

Ronald Fagin, *Combining Fuzzy Information from Multiple Systems*, Proc. of ACM SIGMOD, 2002

<table>
<thead>
<tr>
<th>Segment(s_i)</th>
<th>Sequence</th>
<th>Label(s_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>Ronald Fagin</td>
<td>Author</td>
</tr>
<tr>
<td>S_2</td>
<td>Combining Fuzzy Information from Multiple Systems</td>
<td>Title</td>
</tr>
<tr>
<td>S_3</td>
<td>Proc. of ACM SIGMOD</td>
<td>Conference</td>
</tr>
<tr>
<td>S_4</td>
<td>2002</td>
<td>Year</td>
</tr>
</tbody>
</table>
Hand-Coded Methods

- Easy to construct in some cases
 - e.g., to recognize prices, phone numbers, zip codes, conference names, etc.
- Intuitive to debug and maintain
 - Especially if written in a “high-level” language:
 - Can incorporate domain knowledge
- Scalability issues:
 - Labor-intensive to create
 - Highly domain-specific
 - Often corpus-specific
 - Rule-matches can be expensive
Machine Learning Methods

- Can work well when lots of training data easy to construct

- Can capture complex patterns that are hard to encode with hand-crafted rules
 - e.g., determine whether a review is positive or negative
 - extract long complex gene names
 - Non-local dependencies

The human T cell leukemia lymphotropic virus type 1 Tax protein represses MyoD-dependent transcription by inhibiting MyoD-binding to the KIX domain of p300.

[From AliBaba]
Any of these models can be used to capture words, formatting or both.
Popular Machine Learning Methods

For details: [Feldman, 2006 and Cohen, 2004]

- Naive Bayes
- SRV [Freitag 1998], Inductive Logic Programming
- Rapier [Califf and Mooney 1997]
- Hidden Markov Models [Leek 1997]
- Maximum Entropy Markov Models [McCallum et al. 2000]
- Conditional Random Fields [Lafferty et al. 2001]

- Scalability
 - Can be labor intensive to construct training data
 - At run time, complex features can be expensive to construct or process (batch algorithms can help: [Chandel et al. 2006])
Some Available Entity Taggers

- **ABNER:**
 - Linear-chain conditional random fields (CRFs) with orthographic and contextual features.

- **Alias-I LingPipe**
 - http://www.alias-i.com/lingpipe/

- **MALLET:**
 - http://mallet.cs.umass.edu/index.php/Main_Page
 - Collection of NLP and ML tools, can be trained for name entity tagging

- **MinorThird:**
 - Tools for learning to extract entities, categorization, and some visualization

- **Stanford Named Entity Recognizer:**
 - CRF-based entity tagger with non-local features
Alias-I LingPipe (http://www.alias-i.com/lingpipe/)

- Statistical named entity tagger
 - Generative statistical model
 - Find most likely tags given lexical and linguistic features
 - Accuracy at (or near) state of the art on benchmark tasks

- Explicitly targets scalability:
 - ~100K tokens/second runtime on single PC
 - Pipelined extraction of entities
 - User-defined mentions, pronouns and stop list
 - Specified in a dictionary, left-to-right, longest match
 - Can be trained/bootstrapped on annotated corpora
Outline

- Overview of Information Extraction
 - Entity tagging
 - Relation extraction
 - Event extraction

- Scaling up Information Extraction
 - Focus on scaling up to large collections (where data mining and ML techniques shine)
 - Other dimensions of scalability
Relation Extraction Examples

- Extract tuples of entities that are related in predefined way

Disease Outbreaks relation

<table>
<thead>
<tr>
<th>Date</th>
<th>Disease Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan. 1995</td>
<td>Malaria</td>
<td>Ethiopia</td>
</tr>
<tr>
<td>July 1995</td>
<td>Mad Cow Disease</td>
<td>U.K.</td>
</tr>
<tr>
<td>Feb. 1995</td>
<td>Pneumonia</td>
<td>U.S.</td>
</tr>
</tbody>
</table>

* May 19 1995, Atlanta -- The Centers for Disease Control and Prevention, which is in the front line of the world's response to the deadly Ebola epidemic in Zaire, is finding itself hard pressed to cope with the crisis…

Relation Extraction

From AliBaba
Knowledge engineering

- Experts develop rules, patterns:
 - Can be defined over lexical items: “<company> located in <location>”
 - Over syntactic structures: “((Obj <company>) (Verb located) (*) (Subj <location>)”
- Sophisticated development/debugging environments:
 - Proteus, GATE

Machine learning

- Supervised: Train system over manually labeled data
- Partially-supervised: train system by bootstrapping from “seed” examples:
 - Agichtein & Gravano 2000, Etzioni et al., 2004, Yangarber & Grishman 2001, …
 - “Open” (no seeds): Sekine et al. 2006, Cafarella et al. 2007, Banko et al. 2007
- Hybrid or interactive systems:
 - Experts interact with machine learning algorithms (e.g., active learning family) to iteratively refine/extend rules and patterns
 - Interactions can involve annotating examples, modifying rules, or any combination
Traditional vs Open Information extraction

Table 2: The contrast between traditional and open IE.

<table>
<thead>
<tr>
<th></th>
<th>Traditional IE</th>
<th>Open IE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Corpus + Labeled Data</td>
<td>Corpus + Domain-Independent Methods</td>
</tr>
<tr>
<td>Relations</td>
<td>Specified In Advance</td>
<td>Discovered Automatically</td>
</tr>
<tr>
<td>Complexity</td>
<td>$O(D \times R)$, D documents, R relations</td>
<td>$O(D)$, D documents</td>
</tr>
</tbody>
</table>
How open IE systems work

- learn a general model of *how* relations are expressed (in a particular language), based on unlexicalized features such as part-of-speech tags. (Identify a verb)

- Learn domain-independent regular expressions. (Punctuations, Commas).
Is there a general model of relationships in English

Table 1: Taxonomy of binary relationships. Nearly 95% of 500 randomly selected sentences belong to one of the eight categories noted here.

<table>
<thead>
<tr>
<th>Relative Frequency</th>
<th>Category</th>
<th>Simplified Lexico-Syntactic Pattern</th>
</tr>
</thead>
</table>
| 37.8 | Verb | E_1 Verb E_2
X established Y |
| 22.8 | Noun + Prep | E_1 NP Prep E_2
X settlement with Y |
| 16.0 | Verb + Prep | E_1 Verb Prep E_2
X moved to Y |
| 9.4 | Infinitive | E_1 to Verb E_2
X plans to acquire Y |
| 5.2 | Modifier | E_1 Verb E_2 Noun
X is Y winner |
| 1.8 | Coordinate$_n$ | E_1 (and, | I-| I:) E_2 NP
X-Y deal |
| 1.0 | Coordinate$_v$ | E_1 (and,|) E_2 Verb
X, Y merge |
| 0.8 | Appositive | E_1 NP (|:)? E_2
X hometown : Y |
There is a huge amount of implicit knowledge in the Web
Make use of this implicit knowledge together with statistical information to propose formal annotations and overcome the vicious cycle:

\[\text{semantics} \approx \text{syntax} + \text{statistics} \]?

Annotation by maximal statistical evidence
A small quiz

What is Laksa?

A: dish B: city

C: temple D: mountain
Asking Google!

- „cities such as Laksa“ 0 hits
- „dishes such as Laksa“ 10 hits
- „mountains such as Laksa“ 0 hits
- „temples such as Laksa“ 0 hits

⇒ Google knows more than all of you together!
⇒ Example of using syntactic information + statistics to derive semantic information
Patterns

- HEARST1: <CONCEPT>s such as <INSTANCE>
- HEARST2: such <CONCEPT>s as <INSTANCE>
- HEARST3: <CONCEPT>s, (especially/including) <INSTANCE>
- HEARST4: <INSTANCE> (and/or) other <CONCEPT>s

Examples:
- dishes such as Laksa
- such dishes as Laksa
- dishes, especially Laksa
- dishes, including Laksa
- Laksa and other dishes
- Laksa or other dishes
Patterns (Cont’d)

- DEFINITE1: the <INSTANCE> <CONCEPT>
- DEFINITE2: the <CONCEPT> <INSTANCE>

- APPOSITION:<INSTANCE>, a <CONCEPT>
- COPULA: <INSTANCE> is a <CONCEPT>

Examples:
- the Laksa dish
- the dish Laksa
- Laksa, a dish
- Laksa is a dish
PANKOW Process

1. Web page
2. Candidate proper nouns
3. Google search
4. Annotated Web page

- South Africa is a country
- South Africa is a hotel
- the South Africa country
- the South Africa hotel

1,800 hits
0 hits
121 hits
40 hits
Asking Google (more formally)

- Instance $i \in I$, concept $c \in C$, pattern $p \in \{\text{Hearst1, ..., Copula}\}$ \textit{count}(i,c,p) returns the number of Google hits of instantiated pattern

\[
\text{count}(i,c) := \sum_p \text{count}(i,c,p)
\]

- E.g. \text{count}(Laksa,dish):=\text{count}(Laksa,dish,def1)+...

- Restrict to the best ones beyond threshold θ

\[
R_\theta := \left\{(i,c_i) \mid i \in I, c_i := \arg \max_{c \in C} \left(\text{count}(i,c)\right) \land \text{count}(i,c) \geq \theta \right\}
\]
<table>
<thead>
<tr>
<th>Location</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic city</td>
<td>1520837</td>
</tr>
<tr>
<td>Bahamas island</td>
<td>649166</td>
</tr>
<tr>
<td>USA country</td>
<td>582275</td>
</tr>
<tr>
<td>Connecticut state</td>
<td>302814</td>
</tr>
<tr>
<td>Caribbean sea</td>
<td>227279</td>
</tr>
<tr>
<td>Mediterranean sea</td>
<td>212284</td>
</tr>
<tr>
<td>Canada country</td>
<td>176783</td>
</tr>
<tr>
<td>Guatemala city</td>
<td>174439</td>
</tr>
<tr>
<td>Africa region</td>
<td>131063</td>
</tr>
<tr>
<td>Australia country</td>
<td>128607</td>
</tr>
<tr>
<td>France country</td>
<td>125863</td>
</tr>
<tr>
<td>Germany country</td>
<td>124421</td>
</tr>
<tr>
<td>Easter island</td>
<td>96585</td>
</tr>
<tr>
<td>St Lawrence river</td>
<td>65095</td>
</tr>
<tr>
<td>Commonwealth state</td>
<td>49692</td>
</tr>
<tr>
<td>New Zealand island</td>
<td>40711</td>
</tr>
<tr>
<td>Adriatic sea</td>
<td>39726</td>
</tr>
<tr>
<td>Netherlands country</td>
<td>37926</td>
</tr>
<tr>
<td>St John church</td>
<td>34021</td>
</tr>
<tr>
<td>Belgium country</td>
<td>33847</td>
</tr>
<tr>
<td>San Juan island</td>
<td>31994</td>
</tr>
<tr>
<td>Mayotte island</td>
<td>31540</td>
</tr>
<tr>
<td>EU country</td>
<td>28035</td>
</tr>
<tr>
<td>UNESCO organization</td>
<td>27739</td>
</tr>
<tr>
<td>Austria group</td>
<td>24266</td>
</tr>
<tr>
<td>Greece island</td>
<td>23021</td>
</tr>
<tr>
<td>Malawi lake</td>
<td>21081</td>
</tr>
<tr>
<td>Israel country</td>
<td>19732</td>
</tr>
<tr>
<td>Perth street</td>
<td>17880</td>
</tr>
<tr>
<td>Luxembourg city</td>
<td>16393</td>
</tr>
<tr>
<td>Nigeria state</td>
<td>15650</td>
</tr>
<tr>
<td>St Croix river</td>
<td>14952</td>
</tr>
<tr>
<td>Nakuru lake</td>
<td>14840</td>
</tr>
<tr>
<td>Kenya country</td>
<td>14382</td>
</tr>
<tr>
<td>Benin city</td>
<td>14126</td>
</tr>
<tr>
<td>Cape Town city</td>
<td>13768</td>
</tr>
</tbody>
</table>
Evaluation Scenario

- Corpus: 45 texts from http://www.lonelyplanet.com/destinations

- Ontology: tourism ontology from GETESS project
 - #concepts: original – 1043; pruned – 682

- Manual Annotation by two subjects:
 - A: 436 instance/concept assignments
 - B: 392 instance/concept assignments
 - Overlap: 277 instances (Gold Standard)
 - A and B used 59 different concepts
 - Categorial (Kappa) agreement on 277 instances: 63.5%
Results

Precision
Recall
F-Measure

F=28.24%
R/Acc=24.90%
Comparison

<table>
<thead>
<tr>
<th>System</th>
<th>#</th>
<th>Preprocessing / Cost</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MUC-7]</td>
<td>3</td>
<td>Various (?)</td>
<td>>> 90%</td>
</tr>
<tr>
<td>[Fleischman02]</td>
<td>8</td>
<td>N-gram extraction ($)</td>
<td>70.4%</td>
</tr>
<tr>
<td>PANKOW</td>
<td>59</td>
<td>none</td>
<td>24.9%</td>
</tr>
<tr>
<td>[Hahn98] –TH</td>
<td>196</td>
<td>syn. & sem. analysis ($$$)</td>
<td>21%</td>
</tr>
<tr>
<td>[Hahn98]-CB</td>
<td>196</td>
<td>syn. & sem. analysis ($$$)</td>
<td>26%</td>
</tr>
<tr>
<td>[Hahn98]-CB</td>
<td>196</td>
<td>syn. & sem. analysis ($$$)</td>
<td>31%</td>
</tr>
<tr>
<td>[Alfonseca02]</td>
<td>1200</td>
<td>syn. analysis ($$)</td>
<td>17.39% (strict)</td>
</tr>
</tbody>
</table>
Results (Interactive Mode)

F=51.65%
R/Acc=49.46%
Information Extraction – Extracting Knowledge from Wikipedia

Steffen Staab

Semantic Web
Extracting knowledge

- Sören Auer, Jens Lehmann. „What have Innsbruck and Leipzig in common? Extracting Semantics from Wiki Content.” ESWC 2007

- The amount of knowledge in Wikipedia
 - English ~ 3M articles
 - German ~1M articles
 - Polish ~620K articles
 - Over 250 languages
 - Created and edited by users, for other users to read
 - Arranged into categories, included some structure
 - … but generally not machine understandable
DBpedia is a community effort to
- extract structured (“infobox”) information from Wikipedia
- provide a query endpoint to the dataset
- interlink the DBpedia dataset with other datasets on the Web

Why it works?
- Data: Wikipedia full dumps freely available
- Use of open source software
Wikipedia Templates

- Structured and “standardized” knowledge in Wikipedia
- Reused for multiple objects that share similar semantics

```wikipedia
{{Infobox Town AT |
  name = Innsbruck |
  image_coa = InnsbruckWappen.png |
  image_map = Karte-tirol-l.png |
  state = [[Tyrol]] |
  regbzk = [[Statutory city]] |
  population = 117,342 |
  population_as_of = 2006 |
  pop_dens = 1,119 |
  area = 104.91 |
  elevation = 574 |
  lat_deg = 47 |
  lat_min = 16 |
  lat_hem = N |
  lon_deg = 11 |
  lon_min = 23 |
  lon_hem = E |
  postal_code = 6010-6080 |
  area_code = 0512 |
  licence = I |
  mayor = Hilde Zach |
  website = [http://innsbruck.at] |
}}
```
Wiki Templates in extraction – algorithm

- Identify pages with templates

- Choose well-populated / used templates
 - Unused templates can only bring errors

- Parse template (XMLized Wikipedia format)
 - Get attributes → relations
 - Get values → objects

- Create relevant triples from extracted information
 - URI-fy references
 - Add data types (if known from template context)
Templates – Obstacles in extraction

- Not all pages include templates
 - Even within the same topic not all pages may have it

- Template definition flaws
 - Not well-formed – include presentation properties
 - Multiple values as objects for more intuitive presentation
 - [[Innsbruck]], [[Austria]]
 - Complex and redundant attribute values
 - height=5’11” (180cm)
 - One subject can have multiple templates defined
 - Infobox_Film, Infobox Film, Infobox_film, …
 - Multiple attribute names to define the same relationship
Further facts

- Exploiting rich Wikipedia linking
 - Unnamed links to other entities in Wikipedia
 - HREFs (for now …)
 - Categorization
 - Wikipedia categories
 - Not strict hierarchy, rather thesaurus
 - Multiple languages
 - Variety of languages for the same entity
 - Links to open data and other web resources
 - e.g. geo locations
 - Links to other Wiki projects
 - Wiktionary
 - Wikimedia Commons
Extracting structured data from Wikipedia

```ttl
@prefix dbpedia <http://dbpedia.org/resource/>.
@prefix dbterm <http://dbpedia.org/property/>.

dbpedia:Amsterdam
  dbterm:officialName "Amsterdam" ;
  dbterm:longd "4" ;
  dbterm:longm "53" ;
  dbterm:longs "32" ;
  ...
  dbterm:leaderTitle "Mayor" ;
  dbterm:leaderName dbpedia:Job_Cohen ;
  ...
  dbterm:areaTotalKm "219" ;
  ...

dbpedia:ABN_AMRO
  dbterm:location dbpedia:Amsterdam ;
  ...
```

The Keizergracht at dusk:
Location of Amsterdam
Coordinates: 52°22′23″N 4°53′32″E
Automatic links among open datasets

<http://dbpedia.org/resource/Amsterdam>
 owl:sameAs <http://rdf.freebase.com/ns/...> ;
 owl:sameAs <http://sws.geonames.org/2759793> ;

<http://sws.geonames.org/2759793>
 owl:sameAs <http://dbpedia.org/resource/Amsterdam>
 wgs84_pos:lat "52.3666667" ;
 wgs84_pos:long "4.8833333" ;
 geo:inCountry <http://www.geonames.org/countries/#NL> ;

Processors can switch automatically from one to the other…
Extracted Wikipedia
→ DBpedia.org
Linked Open Data
SPARQL Query Interface
http://en.wikipedia.org/wiki/August_Strindberg

August Strindberg

From Wikipedia, the free encyclopedia

This article needs additional citations for verification. Please help improve this article by adding reliable references. Unsourced material may be challenged and removed. (December 2006)

"Strindberg" redirects here. For other uses, see Strindberg (disambiguation).

Johan August Strindberg ([stɪnˈdbɛrx̠] pronounced [stɛnˈboːx̠]) (22 January 1849 – 14 May 1912) was a Swedish playwright and writer. He is arguably the most influential and most important of all Swedish authors, and one of the most influential Scandinavian authors, along with Knut Hamsun, with whom he fraternized while in Paris in the mid 1890s. Henrik Ibsen, Søren Kierkegaard and Hans Christian Andersen. Strindberg is known as one of the fathers of modern theatre. His work falls into two major literary movements, Naturalism and Expressionism.[1]

Contents

1 Biography
 1.1 Early years
 1.2 Career
 1.3 Politics
 1.4 Willing
 1.5 Other interests
 1.6 Personal life
2 Bibliography
 2.1 Drama
 2.2 Poetry, fiction, and autobiography
3 In popular culture
4 Gallery
5 References
6 Sources
7 External links

Biography

Early years

Strindberg was the third son of Carl Oscar Strindberg, a shipping agent, and Ulrika Eleonora (née) Norling. Ulrika was twelve years Carl's junior and of humble origin, called a "domestic servant woman" by Strindberg. He used this...
1. Use URIs as names for things
2. Use http URIs
3. When someone looks up a name, provide useful information
4. Include links to other URIs so that they can discover more things
<table>
<thead>
<tr>
<th>rdfs:label</th>
<th>August Strindberg (en)</th>
<th>August Strindberg (fr)</th>
<th>ヨハン・アウグスト・ストリンドベリ</th>
<th>August Strindberg (nl)</th>
<th>August Strindberg (pl)</th>
<th>Стремберг, Юхан Август (ru)</th>
<th>August Strindberg (sv)</th>
<th>August Strindberg (es)</th>
<th>August Strindberg (it)</th>
<th>August Strindberg (pt)</th>
<th>奥古斯特·斯特林堡 (zh)</th>
<th>August Strindberg (da)</th>
<th>August Strindberg (de)</th>
<th>August Strindberg (no)</th>
</tr>
</thead>
<tbody>
<tr>
<td>owl:sameAs</td>
<td>http://www4.wiwiss.fu-berlin.de/gutendata/resource/people/Strindberg_August_1849-1</td>
<td></td>
<td>http://rdf.freebase.com/ns/guid.9202a8c04000061f80000000000617ed</td>
<td></td>
</tr>
<tr>
<td>foaf:depiction</td>
<td>http://upload.wikimedia.org/wikipedia/commons/thumb/4/49/August_Strindberg.jpg/210px-August_Strindberg.jpg</td>
<td></td>
</tr>
<tr>
<td>foaf:img</td>
<td>http://upload.wikimedia.org/wikipedia/commons/4/49/August_Strindberg.jpg</td>
<td></td>
</tr>
<tr>
<td>foaf:page</td>
<td>http://en.wikipedia.org/wiki/August_Strindberg</td>
<td></td>
</tr>
<tr>
<td>is dbpedia-owl:author of</td>
<td>dbpedia:Inferno_%28Strindberg%29</td>
<td></td>
</tr>
<tr>
<td>is dbpedia-owl:influenced of</td>
<td>dbpedia:Emanuel_Swedenborg</td>
<td></td>
</tr>
<tr>
<td>is dbpedia-owl:influences of</td>
<td>dbpedia:S%C3%B6ren_Kierkegaard</td>
<td></td>
</tr>
<tr>
<td>is dbpedia-owl:writer of</td>
<td>dbpedia:Tennessee_Williams</td>
<td></td>
</tr>
<tr>
<td>is p:author of</td>
<td></td>
</tr>
</tbody>
</table>

Include links to other URIs so that they can discover more things.
Stockholm is Sweden's capital and its largest city. It is the site of the national Swedish government, the parliament, and the official residence of the Swedish monarch. As of 2003, it had 21.3% of the Swedish population and contributes 29.1% of Sweden's gross domestic product.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbpedia-owl:establishedTitle</td>
<td>First mention</td>
</tr>
<tr>
<td>dbpedia-owl:foundingDate</td>
<td>1262</td>
</tr>
<tr>
<td>dbpedia-owl:latitudeInMinutes</td>
<td>21</td>
</tr>
<tr>
<td>dbpedia-owl:latitudeInNorthSouth</td>
<td>N</td>
</tr>
<tr>
<td>dbpedia-owl:latitudeInDegrees</td>
<td>59</td>
</tr>
<tr>
<td>dbpedia-owl:leaderName</td>
<td>dbpedia: Moderate_Party</td>
</tr>
<tr>
<td>dbpedia-owl:leaderTitle</td>
<td>Mayor</td>
</tr>
<tr>
<td>dbpedia-owl:longitudeInDegrees</td>
<td>18</td>
</tr>
<tr>
<td>dbpedia-owl:longitudeInMinutes</td>
<td>4</td>
</tr>
<tr>
<td>dbpedia-owl:longsidesInEastWest</td>
<td>E</td>
</tr>
<tr>
<td>dbpedia-owl:nativeName</td>
<td>Stockholms stad</td>
</tr>
<tr>
<td>dbpedia-owl:populationAsOf</td>
<td>2008</td>
</tr>
<tr>
<td>dbpedia-owl:populationMetro</td>
<td>1949516</td>
</tr>
<tr>
<td>dbpedia-owl:populationTotal</td>
<td>802611</td>
</tr>
<tr>
<td>dbpedia-owl:populationUrbanTotal</td>
<td>1252020</td>
</tr>
<tr>
<td>dbpedia-owl:postalCode</td>
<td>100 00–200 00</td>
</tr>
</tbody>
</table>
Extracting additional facts

- Templates cover only very small fraction of knowledge
- Named links in Wikipedia do not provide all required relationships
- Large knowledge resides within “plain” HREFs
 … but this knowledge is hidden in text created for humans

Need to parse free text to get meaningful relationships
Rule and Heuristic based method
- Pattern-based approach
- Uses WordNet

- YAGO [Suchanek et. al, 2007]
- [Ruiz-Casado et. al. 2006]
- [Weld et al]
- [Suchanek et al 2009]
Extracting more semantics

- Use help of other knowledge sources
 - WordNet (with named relationships)
 - Is a
 - Is part of
 - Hypernym
 - ...
 - Map entities / entries between Wikipedia and WordNet
 - Check if entries connected in Wikipedia are connected in WordNet
 - Found? Enrich the link semantics
Extracting more semantics

- Learning common patterns for interesting relationships
 - is-author-of, is-the-capital-of, is-employee-of, ...

- Seed initial patterns and look for them in training corpus
- Extract common patterns between linked entries
 - Search for support in Wikipedia
 - Search for pattern support using search engines
- Generalize it
- Apply it to extract more information
Applying open information extraction on Wikipedia

- Web download
- Extraction of sentences
- List of related word pairs
- List of patterns
- Generalisation, pruning and disambiguation
- Generalised and pruned pattern set
- Extraction of related pairs
- Set of new extracted pairs that hold the relation
- Training corpus
Generalizing patterns

- Example (known entities are underlined):
 - Alfred Hitchcock directed the famous film Psycho
 - Alfred Hitchcock directed the well known film Psycho
 - \(?x\) directed the famous film \(?y\)
 - \(?x\) directed the well known film \(?y\)
 - \(?x\) directed the famous | well known film \(?y\)
 - \(?x\) directed the * famous | known film \(?y\)

- Apply pattern
 - Alfred Hitchcock directed the famous film The Birds
 - Bernardo Bertolucci directed the well known film The Last Emperor
 - Woody Allen directed the amusing and famous film Annie Hall
Finding good patterns

- Good patterns
 - Support in training data
 - Found in Wikipedia documents
 - Unambiguous – matching same types / topics
 - Not the best one: ?x’s ?y
 - Einstein’s Theory of General Relativity
 - Bosco’s The Garden of Delights
 - Tolkien’s Lord of the Rings
 - Need pruning
 - Support in free text search
 - Check how often the pairs you found are matched with this pattern in web documents
Fact extraction from Wikipedia

- Subtree mining over dependency parse trees
 - [Nguyen et. al, 2007]

Figure 2: Dependency trees in (a) & (b); core trees with respect to CEO relationship in (c) & (d); new representation of the core trees in (e) & (f); common subtree in (g). The red letters EP denote the principal entity; the blue letters ES denote the secondary entity.
Relationships between Wikipedia categories

- Wikipedia categories
 - Organized as thesaurus
 - Have some hierarchy

 - ... additionally can be connected in more meaningful way

Some pages classified as “countries” link to pages classified as “capitals”
 → “country_to_capital” relationship

need good support for such relationship to distinguish between meaningful and navigational links

[Chernov et. al. 2006]
Relationships between Wikipedia categories

- Analyze category graph with support of instance pages
 - Links between categories
 - Connectivity ratio between classified pages in two selected categories
 - Links between pages in two analyzed categories
 - Overall links for analyzed pages
 - Use it to calculate
 - Semantic Connection Strength
 - Describe how strongly categories are related
References

- Sören Auer, Jens Lehmann. „What have Innsbruck and Leipzig in common? Extracting Semantics from Wiki Content.” ESWC 2007
- Maria Ruiz-Casado, Enrique Alfonseca and Pablo Castells. “Automatic extraction of semantic relationships for WordNet by means of pattern learning from Wikipedia”, 10th Int. Conference on Applications of Natural Language to Information Systems, NLDB 2005, Alicante, Spain
- Fei Wu, Raphael Hoffmann, Daniel S. Weld: Information extraction from Wikipedia: moving down the long tail. KDD 2008: 731-739
Excercise 3

Find explicit patterns on the Web by using a search engine describing

- Concerts
- Food ingredients
- Hotels

- …add 3 categories of your own…
Exam

- Friday
- Same room
- Start 10:15

- 90 Minutes for Semantic Web and Web Engineering
- 3 questions (with subquestions) each

- You decide upfront whether you want to try a single course or the complete module.
- If you only try one course you have to hand in after 45 minutes