Network Theory
Lecture: Social Web and Bibliometrics

Universität Koblenz-Landau,
SS 2013

York Sure-Vetter
Network Theory and Terminology
Terminology

http://www.cis.upenn.edu/~mkearns/teaching/NetworkedLife/
[Diestel 2005]

Network

- A collection of individual or atomic **entities**
- Referred to as **nodes** or vertices (the “dots” or “points”)
- Collection of **links** or edges between vertices (the “lines”)
- Links can represent any **pairwise** relationship
- Links can be directed or undirected
- **Network: entire collection of nodes and links**
- For us, a network is an abstract object (list of pairs) and is separate from its visual layout
- that is, we will be interested in properties that are invariant
 - structural properties
 - statistical properties of families of networks
Social Networks

Figure 1.3. Real social networks exhibit clustering, the tendency of two individuals who share a mutual friend to be friends themselves. Here, Ego has six friends, each of whom is friends with at least one other.
Keyword = Hochschule OR Studium

8304 SOLIS-Records
5172 connected authors
(1173 Giant)
Social Networks Examples

Why and How to Flash Your BIOS
this url has been saved by 106 people.
save this to your bookmarks »

user notes

Why and How to Flash Your BIOS
rlaw77

This article is going to focus on the basics and explain ways to flash the BIOS, precautions and how to recover in case of a bad flash.
edwinek

Why and How to Flash Your BIOS (Page 1 of 4) Flashing the BIOS is one of the most feared topics related to computers. Yes, people should be very cautious because it can be dangerous. This article is going to focus on the basics and explain ways to flash
oblonski

common tags cloud | list
article articles bios computer computers diagnostic flash geek guide hacking hardware howto lifehacker pc reference software tech technology toread tutorial tutorials utilities windows

posting history
» first posted by farbiarz to system:unfiled

by JillSw3d3 to hardware
by gts to bios boost post speed software flash pc hardware computer
by sgill292 to bios flash computer hardware
by Curioso44 to boot
by catfish182 to system:unfiled
by anurag_bhd to howto flash bios
Social Networks Entities Simplified

Xing:
- Person

Flickr:
- User
- Photo

Last.fm:
- User
- Song/Band

Del.icio.us
- User
- URL
Object-Centred Sociality
[Knorr Cetina 1997]

• Suggests to extend the concept of sociality, which is primarily understood to exist between individuals, to **objects**
• Claims that in a knowledge society, **object relations** substitute for and become constitutive of social relations
• Promotes an „expanded conception of sociality“ that includes (but is not limited to) material objects
• **Objects of sociality are close to our interests**
• From a more applied perspective, Zengestrom\(^1\) argues that successful social software **focuses on similiar objects of sociality** (although the term is used slightly differently).
• These objects mediate social ties between people.

Can you name objects of sociality in existing social software? What's the object of sociality in, e.g. XING?

By altering the object of sociality, can you come up with new ideas for social software applications?

Flickr Graph
Network Examples [Newman 2003]

FIG. 4 The two best studied information networks. Left: the citation network of academic papers in which the vertices are papers and the directed edges are citations of one paper by another. Since papers can only cite those that came before them (lower down in the figure) the graph is acyclic—it has no closed loops. Right: the World Wide Web, a network of text pages accessible over the Internet, in which the vertices are pages and the directed edges are hyperlinks. There are no constraints on the Web that forbid cycles and hence it is in general cyclic.
One mode / two mode networks
(uni/bipartite graphs)

One mode network:
• A single type of nodes

Two mode network:
• Two types of nodes
• Edges are only possible between different types of nodes
Social Networks Entities Simplified (revisited)

Xing:
- Person
- Person
 - One mode

Flickr:
- User
- Photo
 - Two mode

Last.fm:
- User
- Song/Band
 - Two mode

Del.icio.us
- User
- URL
 - Two mode
How can we represent (social) networks?

We will discuss three basic forms:

- Adjacency matrices
- Adjacency lists
- Incident matrices

Remember: we are looking for something separate from the visual model
Adjacency Matrix for one mode networks

An **adjacency matrix** is a means of representing which vertices of a graph are adjacent to which other vertices:

- Complete description of a graph
- The matrix is symmetric for nondirectional graphs
- A row and a column for each node
- Of size $g \times g$ (g rows and g columns)
 - g equals the number of nodes
Adjacency matrices for One-Mode Networks
taken from http://courseweb.sp.cs.cmu.edu/~cs111/applications/in/lecture18.html
Adjacency lists for One-Mode Networks
taken from http://courseweb.sp.cs.cmu.edu/~cs111/applications/ln/lecture18.html

An **adjacency list** is the representation of all edges or arcs in a graph as a list.
Incidence Matrix for One-Mode Networks

- (Another) complete description of a graph
- Nodes indexing the rows, lines indexing the columns
- \(g \) nodes and \(L \) lines, the matrix \(I \) is of size \(g \times L \)
- A "1" indicates that a node \(n_i \) is incident with line \(l_j \)
- Each column has exactly two 1's in it

Table 4.3. Example of an incidence matrix: "lives near" relation for six children

<table>
<thead>
<tr>
<th></th>
<th>(l_1)</th>
<th>(l_2)</th>
<th>(l_3)</th>
<th>(l_4)</th>
<th>(l_5)</th>
<th>(l_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_1)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(n_2)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(n_3)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(n_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(n_5)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(n_6)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

[Table from Wasserman Faust 1994]
Adjacency lists vs. matrices

taken from http://courseweb.sp.cs.cmu.edu/~cs111/applications/in/lecture18.html

Matrices vs. Lists

If the graph is **sparse** (there aren't many edges), then the **matrix will take up a lot of space** indicating all of the pairs of vertices which don't have an edge between them, but the **adjacency list does not have that problem**, because it only keeps track of what edges are actually in the graph.

On the other hand, if there are **a lot of edges** in the graph, or if it is fully connected, then the list has a **lot of overhead** because of all of the references.
Adjacency Matrices for Two Mode Networks

- Complete description of a graph
- A row and a column for each node
- Of size $m \times n$ (m rows and n columns)
Two Mode Networks - Rates of Participation
[Wasserman Faust 1994]

• The number of events with which each actor is affiliated.
• These quantities are either given by
 – the row totals of affiliation matrix A or
 – the entries on the main diagonal of the one-mode socio-matrice X^N
• Thus, the number of events with which actor i is affiliated is equal to the degree of the node representing the actor in the bipartite graph.
• Also interesting: **Average rate of participation**

Examples: What does the rate of participation relate to in the Netflix / Amazon bipartite graph of customer/movies or customer/products?
Two Mode Networks - Size of Events
[Wasserman Faust 1994]

- The number of actors participating in each event.
- The size of each event is given by either
 - the column totals of the affiliation matrix A or
 - the entries on the main diagonal of the one-mode sociomatrix X^M.
- Thus, the size of each event is equal to the degree of the node representing the event in the bipartite graph.
- Also interesting: **Average size of events**
 - Sometimes useful to study average size of clubs or organizations
- Size of events might be constrained:
 - E.g. board of company directors are made up of a fixed number of people

Examples: What does the rate of participation relate to in the Netflix / Amazon bipartite graph of customer/movies or customer/products?
Terminology II
http://www.cis.upenn.edu/~mkearns/teaching/NetworkedLife/

- **Network size**: total number of vertices (denoted N)
- Maximum number of edges (undirected): \(N(N-1)/2 \sim N^2/2\)
- **Distance** or geodesic path \(L\) between vertices \(u\) and \(v\):
 - number of edges on the **shortest path** from \(u\) to \(v\)
 - can consider directed or undirected cases
 - infinite if there is no path from \(u\) to \(v\)
- **Diameter** of a network
 - worst-case diameter: largest distance between a pair
 - Diameter: longest shortest path between any two pairs
 - average-case diameter: average distance
- If the distance between all pairs is finite, we say the network is connected; else it has multiple components
- **Degree of vertex** \(v\): number of edges connected to \(v\)
- **Density**: ratio of edges to vertices
Definitions
[Newman 2003]

Vertex (*pl. vertices*): The fundamental unit of a network, also called a site (physics), a node (computer science), or an actor (sociology).

Edge: The line connecting two vertices. Also called a bond (physics), a link (computer science), or a tie (sociology).

Directed/undirected: An edge is directed if it runs in only one direction (such as a one-way road between two points), and undirected if it runs in both directions. Directed edges, which are sometimes called *arcs*, can be thought of as sporting arrows indicating their orientation. A graph is directed if all of its edges are directed. An undirected graph can be represented by a directed one having two edges between each pair of connected vertices, one in each direction.

Degree: The number of edges connected to a vertex. Note that the degree is not necessarily equal to the number of vertices adjacent to a vertex, since there may be more than one edge between any two vertices. In a few recent articles, the degree is referred to as the “connectivity” of a vertex, but we avoid this usage because the word connectivity already has another meaning in graph theory. A directed graph has both an in-degree and an out-degree for each vertex, which are the numbers of in-coming and out-going edges respectively.

Component: The component to which a vertex belongs is that set of vertices that can be reached from it by paths running along edges of the graph. In a directed graph a vertex has both an in-component and an out-component, which are the sets of vertices from which the vertex can be reached and which can be reached from it.

Geodesic path: A geodesic path is the shortest path through the network from one vertex to another. Note that there may be and often is more than one geodesic path between two vertices.

Diameter: The diameter of a network is the length (in number of edges) of the longest geodesic path between any two vertices. A few authors have also used this term to mean the *average* geodesic distance in a graph, although strictly the two quantities are quite distinct.
Terminology III

http://www.infosci.cornell.edu/courses/info204/2007sp/
[Diestel 2005]

In undirected networks

• Paths
 – A sequence of nodes $v_1, \ldots, v_i, v_{i+1}, \ldots, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in G

• Cycles (in undirected networks)
 – A path with $v_1 = v_k$ (Begin and end node are the same)
 – Cyclic vs. Acyclic (not containing any cycles: e.g. forests) networks

In directed networks

– Path or cycles must respect directionality of edges

Fig. 1.3.1. A path $P = P^6$ in G

Fig. 1.5.1. A tree
Other types of networks
[Newman 2003]

FIG. 3 Examples of various types of networks: (a) an undirected network with only a single type of vertex and a single type of edge; (b) a network with a number of discrete vertex and edge types; (c) a network with varying vertex and edge weights; (d) a directed network in which each edge has a direction.
Terminology IV
http://www.infosci.cornell.edu/courses/info204/2007sp/

• **Average Pairwise Distance**
 – The **average distance** between all pairs of nodes in a **graph**. If the graph is unconnected, the average distance between all pairs in the largest component.

• **Connectivity**
 – An undirected graph is connected if for every pair of nodes **u** and **v**, there is a **path from u to v** (there is not more than one component).
 – A directed graph is **strongly connected** if for every two nodes **u** and **v**, there is a path from **u** to **v** and a path from **v** to **u**

• **Giant Component**
 – A single **connected component** that accounts for a **significant fraction** of all nodes
Average degree k

http://www.infosci.cornell.edu/courses/info204/2007sp/

- **Average degree k**
 - Degree: The **number of edges** for which a node is an endpoint
 - In undirected graphs: number of edges
 - In directed graphs: k_{in} and k_{out}
 - Average degree: average of the degree of all nodes, a **measure for the density of a graph**

\[d(G) := \frac{1}{|V|} \sum_{v \in V} d(v) \]
Degree Distributions

[Barabasi and Bonabeau 2003]

• Degree distribution $p(k)$
 – A plot showing the fraction of nodes in the graph of degree k, for each value of k

Related concepts
 – Degree histogram
 – Rank / frequency plot
 – Cumulative Degree function (CDF)
 – Pareto distribution

Example:
Degree Distributions Examples

Figure 4.1. The normal distribution specifies the probability, \(p(k) \), that a randomly selected node will have \(k \) neighbors. The average degree \(\langle k \rangle \) lies at the peak of the distribution.

Figure 4.2. A power-law distribution. Although it decreases rapidly with \(k \), it does so much slower than the normal distribution in figure 4.1, implying that large values of \(k \) are more likely.
Graph Theory & Network Theory

- **Graph Theory**
 - Mathematics of graphs
 - Networks with pure structure with properties that are fixed over time
 - Focus on syntax rather than semantics
 - Nodes and edges do not have semantics
 - E.g. A node does not have a social identity
 - Concerned with characteristics of graphs
 - Proofs
 - Algorithms

- **Network Theory**
 - Relate to real-world phenomena
 - Social networks
 - Economic networks
 - Energy networks
 - Networks are *doing something*
 - Making new relations
 - Making money
 - Producing power
 - Are *dynamic*
 - Structure: Dynamics of the network
 - Agency: Dynamics in the network
 - Are *active, which effects*
 - Individual behavior
 - Behavior of the network as a whole
Network Theory

- Are there general statements we can make about any class of network?

- A Science of Networks
Random Networks

- Page 44/ff, Watts 2003, random graphs

Random graph: a network of nodes connected by links in a purely random fashion.

Analogy of Stuart Kaufmann: Throw a boxload of buttons onto the floor, then choose pairs of buttons at random tying them together.

Figure 2.1. A random graph imagined as a collection of buttons tied by strings. Pairs of nodes (buttons) are connected at random by links or ties.

Figure 2.2. Connectivity of a random graph. The fraction of the nodes connected in a single component changes suddenly when the average number of links per node exceeds one.
Scale-Free Networks
[Barabasi and Bonabeau 2003]

• **Some nodes** have a **tremendous number of connections** to other nodes (hubs), whereas most nodes have just a handful.

• Robust against accidental failures, but vulnerable to coordinated attacks (**DEMO**: http://projects.si.umich.edu/netlearn/GUESS/resiliencedegree.html)

• Popular nodes can have millions of links: The network appears to have **no scale** (no limit)

• Two prerequisites: [watts2003]
 – Growth
 – Preferential attachment

• Problem:
 – Scale-free networks are only ever truly scale-free when the network is **infinitely large** (whereas in practice, they are mostly not)
 – This introduces a cut off [page 111, watts 2003]
Remember: Preferential Attachment
[Barabasi 1999]

„The rich getting richer“

Preferential Attachment refers to the high probability of a new vertex to connect to a vertex that already has a large number of connections

Example:
1. a new website linking to more established ones
2. a new individual linking to well-known individuals in a social network
Remember: Preferential Attachment Example

Which node has the highest probability of being linked by a new node in a network that exhibits traits of preferential attachment?

FIG. 1 A small example network with eight vertices and ten edges. [Newman 2003]
Scale-free Networks

[Watts 2003]

The alpha parameter

- \(y = c x^{-\alpha} \) (c, \(\alpha \) being constants) or \(\log(y) = \log(C) - \alpha \log(x) \)
- a power-law with exponent \(\alpha \) is depicted as a straight line with slope -a on a log-log plot

Examples

If the number of cities of a given size decreases in inverse proportion to the size, then we say the distribution has an exponent of \([one/two]\)

That means, we are likely to see cities such as Graz (250,000) roughly \([ten/hundred]\) times as frequently as cities like Vienna (including the Greater Vienna Area, roughly 10 times larger)
Networks [Newman 2003]

<table>
<thead>
<tr>
<th>Network</th>
<th>Type</th>
<th>(n)</th>
<th>(m)</th>
<th>(z)</th>
<th>(\ell)</th>
<th>(\alpha)</th>
<th>(C^{(1)})</th>
<th>(C^{(2)})</th>
<th>(r)</th>
<th>Ref(s).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film actors</td>
<td>undirected</td>
<td>449,913</td>
<td>25,516,482</td>
<td>113.43</td>
<td>3.48</td>
<td>2.3</td>
<td>0.20</td>
<td>0.78</td>
<td>0.208</td>
<td>20, 416</td>
</tr>
<tr>
<td>Company directors</td>
<td>undirected</td>
<td>7,673</td>
<td>55,302</td>
<td>14.44</td>
<td>4.60</td>
<td>–</td>
<td>0.50</td>
<td>0.88</td>
<td>0.276</td>
<td>105, 323</td>
</tr>
<tr>
<td>Math coauthorship</td>
<td>undirected</td>
<td>253,339</td>
<td>496,489</td>
<td>3.92</td>
<td>7.57</td>
<td>–</td>
<td>0.15</td>
<td>0.34</td>
<td>0.120</td>
<td>107, 182</td>
</tr>
<tr>
<td>Physics coauthorship</td>
<td>undirected</td>
<td>52,909</td>
<td>245,300</td>
<td>9.27</td>
<td>6.19</td>
<td>–</td>
<td>0.45</td>
<td>0.56</td>
<td>0.363</td>
<td>311, 313</td>
</tr>
<tr>
<td>Biology coauthorship</td>
<td>undirected</td>
<td>1,520,251</td>
<td>11,803,064</td>
<td>15.53</td>
<td>4.92</td>
<td>–</td>
<td>0.088</td>
<td>0.60</td>
<td>0.127</td>
<td>311, 313</td>
</tr>
<tr>
<td>Telephone call graph</td>
<td>undirected</td>
<td>47,000,000</td>
<td>80,000,000</td>
<td>3.16</td>
<td>2.1</td>
<td>–</td>
<td>0.16</td>
<td>0.092</td>
<td>0.029</td>
<td>8, 9</td>
</tr>
<tr>
<td>Email messages</td>
<td>directed</td>
<td>59,912</td>
<td>86,300</td>
<td>1.44</td>
<td>4.95</td>
<td>1.5/2.0</td>
<td>0.17</td>
<td>0.13</td>
<td>0.45</td>
<td>136</td>
</tr>
<tr>
<td>Email address books</td>
<td>directed</td>
<td>16,881</td>
<td>57,029</td>
<td>3.38</td>
<td>5.22</td>
<td>–</td>
<td>0.005</td>
<td>0.001</td>
<td>0.01</td>
<td>321</td>
</tr>
<tr>
<td>Student relationships</td>
<td>undirected</td>
<td>573</td>
<td>477</td>
<td>1.66</td>
<td>16.01</td>
<td>–</td>
<td>0.005</td>
<td>0.001</td>
<td>0.01</td>
<td>45</td>
</tr>
<tr>
<td>Sexual contacts</td>
<td>undirected</td>
<td>2,810</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WWW nd.edu</td>
<td>directed</td>
<td>269,504</td>
<td>1,497,135</td>
<td>5.55</td>
<td>11.27</td>
<td>2.1/2.4</td>
<td>0.11</td>
<td>0.29</td>
<td>0.067</td>
<td>14, 34</td>
</tr>
<tr>
<td>WWW Altavista</td>
<td>directed</td>
<td>203,549,046</td>
<td>2,130,000,000</td>
<td>10.46</td>
<td>16.18</td>
<td>2.1/2.7</td>
<td>0.10</td>
<td>0.080</td>
<td>0.003</td>
<td>351</td>
</tr>
<tr>
<td>Citation network</td>
<td>directed</td>
<td>783,339</td>
<td>6,716,198</td>
<td>8.57</td>
<td></td>
<td>3.0/–</td>
<td></td>
<td></td>
<td></td>
<td>244</td>
</tr>
<tr>
<td>Roget’s Thesaurus</td>
<td>directed</td>
<td>1,022</td>
<td>5,103</td>
<td>4.99</td>
<td>4.87</td>
<td>–</td>
<td>0.14</td>
<td>0.15</td>
<td>0.157</td>
<td>265, 266</td>
</tr>
<tr>
<td>Word co-occurrence</td>
<td>undirected</td>
<td>480,902</td>
<td>17,000,000</td>
<td>70.13</td>
<td></td>
<td>2.7</td>
<td>0.44</td>
<td></td>
<td></td>
<td>119, 157</td>
</tr>
<tr>
<td>Internet</td>
<td>undirected</td>
<td>10,697</td>
<td>31,992</td>
<td>5.98</td>
<td>3.31</td>
<td>2.5</td>
<td>0.035</td>
<td>0.39</td>
<td>0.189</td>
<td>86, 148</td>
</tr>
<tr>
<td>Power grid</td>
<td>undirected</td>
<td>4,941</td>
<td>6,594</td>
<td>2.67</td>
<td>18.99</td>
<td>–</td>
<td>0.10</td>
<td>0.080</td>
<td>0.003</td>
<td>416</td>
</tr>
<tr>
<td>Train routes</td>
<td>undirected</td>
<td>587</td>
<td>10,603</td>
<td>66.79</td>
<td>2.16</td>
<td>–</td>
<td>0.09</td>
<td>0.033</td>
<td>0.033</td>
<td>366</td>
</tr>
<tr>
<td>Software packages</td>
<td>directed</td>
<td>1,439</td>
<td>1,723</td>
<td>1.20</td>
<td>2.42</td>
<td>1.6/1.4</td>
<td>0.070</td>
<td>0.082</td>
<td>0.016</td>
<td>318</td>
</tr>
<tr>
<td>Software classes</td>
<td>directed</td>
<td>1,377</td>
<td>2,213</td>
<td>1.61</td>
<td>1.51</td>
<td>–</td>
<td>0.033</td>
<td>0.012</td>
<td>0.119</td>
<td>395</td>
</tr>
<tr>
<td>Electronic circuits</td>
<td>undirected</td>
<td>24,097</td>
<td>53,248</td>
<td>4.34</td>
<td>11.05</td>
<td>3.0</td>
<td>0.010</td>
<td>0.030</td>
<td>0.154</td>
<td>155</td>
</tr>
<tr>
<td>Peer-to-peer network</td>
<td>undirected</td>
<td>880</td>
<td>1,296</td>
<td>1.47</td>
<td>4.28</td>
<td>2.1</td>
<td>0.012</td>
<td>0.011</td>
<td>0.366</td>
<td>6, 354</td>
</tr>
<tr>
<td>Metabolic network</td>
<td>undirected</td>
<td>765</td>
<td>3,686</td>
<td>9.64</td>
<td>2.56</td>
<td>2.2</td>
<td>0.090</td>
<td>0.67</td>
<td>0.240</td>
<td>214</td>
</tr>
<tr>
<td>Protein interactions</td>
<td>undirected</td>
<td>2,115</td>
<td>2,240</td>
<td>2.12</td>
<td>6.80</td>
<td>2.4</td>
<td>0.072</td>
<td>0.071</td>
<td>0.156</td>
<td>212</td>
</tr>
<tr>
<td>Marine food web</td>
<td>directed</td>
<td>135</td>
<td>598</td>
<td>4.43</td>
<td>2.05</td>
<td>–</td>
<td>0.16</td>
<td>0.23</td>
<td>0.263</td>
<td>204</td>
</tr>
<tr>
<td>Freshwater food web</td>
<td>directed</td>
<td>92</td>
<td>907</td>
<td>10.84</td>
<td>1.90</td>
<td>–</td>
<td>0.20</td>
<td>0.087</td>
<td>0.326</td>
<td>272</td>
</tr>
<tr>
<td>Neural network</td>
<td>directed</td>
<td>307</td>
<td>2,359</td>
<td>7.68</td>
<td>3.97</td>
<td>–</td>
<td>0.18</td>
<td>0.28</td>
<td>0.226</td>
<td>416, 421</td>
</tr>
</tbody>
</table>

TABLE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices \(n\); total number of edges \(m\); mean degree \(z\); mean vertex-vertex distance \(\ell\); exponent \(\alpha\) of degree distribution if the distribution follows a power law (or “…” if not; in/out-degree exponents are given for directed graphs); clustering coefficient \(C^{(1)}\) from Eq. (3); clustering coefficient \(C^{(2)}\) from Eq. (6); and degree correlation coefficient \(r\), Sec. III.F. The last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.
Scale-Free Networks

- cut off [page 111, watts 2003]

Figure 4.4. A normal-type distribution on a log-log plot. The *cutoff* occurs where the curve disappears into the horizontal axis.
Scale-Free Networks

- cut off [page 111, watts 2003]

Figure 4.5. In practice, power-law distributions always display a characteristic cutoff because of the finite size of the system. The observed degree distribution, therefore, is only ever a straight line on a log-log plot, over some range.
Examples of Scale-Free Networks

[Newman 2003]

FIG. 6 Cumulative degree distributions for six different networks. The horizontal axis for each panel is vertex degree k (or in-degree for the citation and Web networks, which are directed) and the vertical axis is the cumulative probability distribution of degrees, i.e., the fraction of vertices that have degree greater than or equal to k. The networks shown are: (a) the collaboration network of mathematicians [182]; (b) citations between 1981 and 1997 to all papers cataloged by the Institute for Scientific Information [351]; (c) a 300 million vertex subset of the World Wide Web, circa 1999 [74]; (d) the Internet at the level of autonomous systems, April 1999 [86]; (e) the power grid of the western United States [416]; (f) the interaction network of proteins in the metabolism of the yeast *S. Cerevisiae* [212]. Of these networks, three of them, (c), (d) and (f), appear to have power-law degree distributions, as indicated by their approximately straight-line forms on the doubly logarithmic scales, and one (b) has a power-law tail but deviates markedly from power-law behavior for small degree. Network (e) has an exponential degree distribution (note the log-linear scales used in this panel) and network (a) appears to have a truncated power-law degree distribution of some type, or possibly two separate power-law regimes with different exponents.
Graph Structure in the Web
[Broder et al 2000]

Most (over 90%) of the approximately 203 million nodes in a May 1999 crawl form a connected component if links are treated as undirected edges.

IN consists of pages that can reach the SCC, but cannot be reached from it.

OUT consists of pages that are accessible from the SCC, but do not link back to it.

TENDRILS contain pages that cannot reach the SCC, and cannot be reached from the SCC.

Universität Koblenz, Summer 2013
Interesting Results
[Broder et al 2000]

• the **diameter of the central core** \((\text{SCC})\) is at least 28, and the diameter of the graph as a whole is over 500

• for randomly chosen source and destination pages, the **probability** that any path exists from the source to the destination is only 24%

• if a directed path exists, its **average length** will be about 16

• if an undirected path exists (i.e., links can be followed forwards or backwards), its average length will be about 6
Scale-Free vs. Random Networks
[Barabasi and Bonabeau 2003]

RANDOM VERSUS SCALE-FREE NETWORKS

Random networks, which resemble the U.S. highway system (simplified in left map), consist of nodes with randomly placed connections. In such systems, a plot of the distribution of node linkages will follow a bell-shaped curve (left graph), with most nodes having approximately the same number of links.

In contrast, scale-free networks, which resemble the U.S. airline system (simplified in right map), contain hubs (red)—nodes with a very high number of links. In such networks, the distribution of node linkages follows a power law (center graph) in that most nodes have just a few connections and some have a tremendous number of links. In that sense, the system has no “scale.” The defining characteristic of such networks is that the distribution of links, if plotted on a double-logarithmic scale (right graph), results in a straight line.

US highway network

US airline network

Bell Curve Distribution of Node Linkages

Power Law Distribution of Node Linkages
A simple conceptual model for the Internet topology
[Tauro et al 2001]

Jellyfish Model:

- The Internet has a **core of nodes** that form a **clique** and this clique is located in the “middle” of the network.
- The **topological importance** of the nodes **decreases** as we move away from the center.
- The distribution of the **one-degree nodes** across the network **follows a power-law**.
- The Internet topology can be visualized as a **jellyfish**. The value of the model lies in its simplicity and its ability to represent graphically important topological properties.

[Based on inter-domain connectivity data]
A simple conceptual model for the Internet topology
[Tauro et al 2001]

- **Core/Layer 0**
 - The maximal clique that contains the highest-degree node

- **Layer 1**
 - All nodes that are neighbors of the core

- **Layer 2**
 - All nodes neighbouring layer 1 except for the core

Figure 6: The jellyfish as a model for the AS Internet topology.
A simple conceptual model for the Internet topology
[Tauro et al 2001]

- Core is the center of the cap of the jellyfish
- Layers correspond to shells
- One-degree nodes connected to each shell is shown hanging forming the legs of the jellyfish (Hang-n)
 - Hang-1 has the one-degree nodes attached to Layer 1
- Length of legs represents the concentration of one-degree nodes per shell

Figure 6: The jellyfish as a model for the AS Internet topology.
A simple conceptual model for the Internet topology

[Tauro et al 2001]

Real Graphs: We use three instances of the inter-domain Internet topology from the end of 1997 until the middle of 2000, which correspond to approximately three yearly intervals. The National Laboratory for Applied Network Research [9] provided the data.

1. Int-11-97: 3015 nodes and 5156 edges.
2. Int-10-98: 5896 nodes and 11424 edges.

<table>
<thead>
<tr>
<th>Shell</th>
<th>Int-11-97</th>
<th>Int-10-98</th>
<th>Int-10-99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core/Shell-0</td>
<td>8</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>Hang-0</td>
<td>465</td>
<td>514</td>
<td>808</td>
</tr>
<tr>
<td>Shell-1</td>
<td>889</td>
<td>1977</td>
<td>2820</td>
</tr>
<tr>
<td>Hang-1</td>
<td>623</td>
<td>1022</td>
<td>1243</td>
</tr>
<tr>
<td>Shell-2</td>
<td>579</td>
<td>1418</td>
<td>1812</td>
</tr>
<tr>
<td>Hang-2</td>
<td>299</td>
<td>526</td>
<td>683</td>
</tr>
<tr>
<td>Shell-3</td>
<td>97</td>
<td>317</td>
<td>394</td>
</tr>
<tr>
<td>Hang-3</td>
<td>41</td>
<td>95</td>
<td>67</td>
</tr>
<tr>
<td>Shell-4</td>
<td>2</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Hang-4</td>
<td>12</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2: Distribution of nodes in Hanging layers and shells

- Highest degree nodes exhibit the most relations to one-degree nodes
- Nodes at the layers need to go through the core for the majority of their shortest paths
- One-degree nodes useless in terms of connectivity
- The network is very sensitive to failures of the important nodes, while it is insensitive to random node failures
Bipartite Networks
[Watts 2003, Page 120]

- Can always be represented as unipartite networks

Can you give examples for bipartite networks on the web?
Hierarchical Networks

• P39, [Watts2003]

Figure 1.2. A pure branching network. Ego knows only 5 people, but within two degrees of separation, ego can reach 25; within three degrees, 105; and so on.
Pajek

An SNA Tool

http://vlado.fmf.uni-lj.si/pub/networks/pajek/
Example for network analyses

http://collec.repec.org/ras/mans/

Jean Tirole

network rankings

<table>
<thead>
<tr>
<th>rank</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>closeness</td>
<td>6</td>
</tr>
<tr>
<td>betweenness</td>
<td>2</td>
</tr>
</tbody>
</table>

Co-authors

1. Jean Jacques Laffont [pla127], distance 0.0206185567010309
2. Roland Benabou [pbe27], distance 0.0317460317460317
3. Drew Fudenberg [pdb49], distance 0.0387096774193548
4. Eric Maskin [pma498], distance 0.0434732608695552
5. Josh Lerner [ple60], distance 0.0571428571428571
6. Jean Rochet [pro57], distance 0.0588235294117647
7. Paul Jokow [pjc110], distance 0.0588235294117647
8. Patrick Rey [pre34], distance 0.0631578947368421
9. Emmanuel Fathi [pfa207], distance 0.117647058823529
10. Bernard Callaud [pca204], distance 0.12043478260696
11. Mathias Dewatripont [pde423], distance 0.1333333333333333
Any further questions?

Have a good week!