Advanced Data Modeling

Minimal Models

Steffen Staab
Overview

- Logic as query language.
- Grounding.
- Minimal Herbrand models.
- Completion.
Given:

- first-order formula $A[x_1, \ldots, x_n]$
- Herbrand interpretation I

- This first-order formula can be considered as a definition of a relation R_A on T^n_Σ as follows:

$$(t_1, \ldots, t_n) \in R_A := I \models A[t_1, \ldots, t_n]$$
We say that a clause

\[p(t_1, \ldots, t_m) :- L_1, \ldots, L_n \]

defines the relation symbol \(p \).

Let \(\mathcal{C} \) be a set of clauses and \(p \) be a relation symbol. We call the definition of \(p \) in \(\mathcal{C} \) the set of all clauses in \(\mathcal{C} \) that define \(p \).
Principles of semantics

A deductive database is a **set of clauses**.

This set of clauses is regarded as a **collection of definitions** of relations.

The **semantics** defines the meaning of these definitions by associating with them an **interpretation**, or a class of interpretations.

Query answering is based on the semantics.
Two key assumptions

- **the unique name assumption**: each name denotes a unique object.

- **the closed world assumption**:
 - a negative statement $\neg A$ holds if the corresponding positive one A does not hold.

Both assumptions are not supported by (Tarskian) models for first-order logics (**why not?**) → One solution: minimal models
Minimal Herbrand Models

Let I be a Herbrand model of a set of formulas S.

We call I a minimal Herbrand model of S if it is minimal w.r.t. the subset relation, i.e. for every Herbrand model I' of S of the same signature we have $I \subseteq I'$.

I is called the least Herbrand model of S if for every Herbrand model I' of S of the same signature we have $I \subseteq I'$.
Does every set of formulas S have a least Herbrand model?
Does every set of formulas S have a least Herbrand model?

Counterexample for normal clauses:
person(a).
man(X) :- person(X), not woman(X).
woman(X) :- person(X), not man(X).
Does every set of formulas S have a least Herbrand model?

What about definite clauses?
Let E, E' be a pair of terms or formulas.

E' is an **instance** of E, denoted $E > E'$, if there exists a substitution θ: such that $E\theta: = E'$.

ground instance: instance that is ground,

E' is a **variant** of E if E' is an instance of E and E is an instance of E'.
Examples

- $P(x,a)$ is instance of $P(x,y)$ because of $P(x,y)[y|a]$

- $P(b,a)$ is a ground instance

- $P(x,y)$ and $P(u,v)$ are variants of each other, because of
 - $[x|u, y|v]$ and
 - $[u|x, v|y]$
Grounding

- Let \(C \) be a set of clauses and \(\Sigma \) be any signature containing all symbols used in \(C \). The **grounding of \(C \) w.r.t. \(\Sigma \)**, denoted \(C^* \) is the set of all ground instances of the signature \(\Sigma \) of clauses in \(C \).

- Lemma. Let \(I \) be a Herbrand interpretation and \(C \) be a set of clauses. Then \(I \models C \) if and only if \(I \models C^* \).
General proof scheme

First order formula \[\rightarrow\] First order Consequences

Propositional formula \[\rightarrow\] Propositional Consequences

\[(all\ possible\ ways\ of)\]

grounding \[\rightarrow\]

lifting

\[\text{calculus}\]

\[\text{calculus}\]
Proof
Logic with equality

- Additional atomic formulas $s = t$, where s, t are terms.

- Abbreviation: $x \neq y := \neg(x = y)$.

- Unlike other relations, the semantics of $s = t$ is predefined in all Herbrand interpretations: $I \models s = t$ if s coincides with t.
Example valid formulas

- \(f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n) \rightarrow x_1 = y_1 \land \ldots \land x_n = y_n \)
- \(f(x_1, \ldots, x_n) \neq g(y_1, \ldots, y_n) \)
- \(f(x_1, \ldots, x_n) \neq c \)
- \(d \neq c \)
- \(A[t] \iff \forall x (x = t \rightarrow A[x]) \)
Semantics of definitions

Consider a definition of a relation r

$$r(\bar{t}_1) : -G_1$$

$$\ldots$$

$$r(\bar{t}_m) : -G_m$$

What is the meaning of this definition?

Is there a largest Herbrand model?

Especially in the light of negation as failure?
Idea of completion

man(hans).
man(adam).
person(eva).
woman(X) :- person(X), not man(X).

Is eva a woman?
 She might be a man and we just don’t know!
 Minimal model says that she is not a woman! (no minimal model)

Trick: Completion:
man(X) ↔ (X=hans v X=adam).
woman(X) ↔ X=eva.

I.e. hans and adam are the only men.
Idea of Completion

man(hans).
man(X) :- lovesBeer(X,Y).

Completion:
man(X) ↔ X=hans ∨ (∃ Y: X=U ∨ lovesBeer(U,Y))

A man is a man only if he is hans or if he loves some brand of beer.
Completion. Step 1.

Replace every clause by an equivalent one such that the arguments of r are x_1, \ldots, x_n:

Given:

$$r(t_1, \ldots, t_n) :- G$$

Replace by:

$$r(x_1, \ldots, x_n) :- x_1 = t_1 \land \ldots \land x_n = t_n \land G$$
Completion. Step 2.

If there are variables y_1, \ldots, y_k occurring in a body but not in the head, apply \exists to these variables, i.e.,

Given
$$r(x_1, \ldots, x_n) :- G$$

Modify to
$$r(x_1, \ldots, x_n) :- \exists y_1 \ldots \exists y_k G$$
Completion. Step 3.

If there are several definitions, replace them by one

Given

\[r(x_1, \ldots, x_n) :\text{=} G_1 \]

\[\ldots \]

\[r(x_1, \ldots, x_n) :\text{=} G_m \]

Replace by

\[r(x_1, \ldots, x_n) :\text{=} G_1 \lor \ldots \lor G_m \]
Completion. Step 4.

Replace :- by ⇔:

Given
\[r(x_1, \ldots, x_n) :\neg G_1 \lor \ldots \lor G_m \]

Replace by
\[r(x_1, \ldots, x_n) \iff G_1 \lor \ldots \lor G_m \]

The formula
\[r(x_1, \ldots, x_n) \iff G_1 \lor \ldots \lor G_m \]
is called the completed definition of the original set of clauses.
Example

\[r(u,v) :- p(u,1,z). \]
\[r(v,u) :- p(2,u,z). \]

\[r(x,y) :- x = u \land y = v \land p(u,1,z). \]
\[r(x,y) :- x = v \land y = u \land p(2,v,z). \]

\[r(x,y) :- \exists z,u,v \ x = u \land y = v \land p(u,1,z). \]
\[r(x,y) :- \exists z,u,v \ x = u \land y = v \land p(2,v,z). \]

\[r(x,y) \leftrightarrow (\exists z,u,v \ x = u \land y = v \land p(u,1,z)) \lor (\exists z,u,v \ x = u \land y = v \land p(2,v,z)) \]
Properties

- All steps **preserve Herbrand models**, except for the last one.
 - Why?

- Gives a **unique semantics to non-recursive definitions**
 - What about recursive definitions?

- Logic programming **semantics and first-order semantics coincide for definite programs**
Recursive definitions

\[
\text{odd}(1).
\text{even}(f(X)) :\neg \text{odd}(X).
\text{odd}(f(X)) :\neg \text{even}(X).
\]

Completion:

\[
\text{odd}(X) \iff X=1 \lor \exists Y (X=f(Y) \land \text{even}(Y)).
\text{even}(X) \iff \exists Y (X=f(Y) \land \text{odd}(Y)).
\]
Recursive definitions

person(adam).
person(eva).
woman(X) :- person(X), not man(X).
man(X) :- person(X), not woman(X).

Completion:
woman(X) ↔ ∃Y(Y=X ∧ person(Y) ∧ not man(Y)).
man(X) ↔ ∃Y(Y=X ∧ person(Y) ∧ not woman(Y)).

Semantics not unique in logic programming:
Models are
I={woman(adam),woman(eva),person(adam),person(eva)}
I={man(adam),man(eva), person(adam),person(eva)}
I={woman(adam),man(eva), person(adam),person(eva)}
I={man(adam),woman(eva), person(adam),person(eva)}

What is the semantics in first order logics?
Recursive definitions

person(adam).
person(eva).
woman(X) :- person(X), not man(X).
man(X) :- person(X), not woman(X).

Completion:
woman(X) ↔ ∃Y (Y=X ∧ person(Y) ∧ not man(Y)).
man(X) ↔ ∃Y (Y=X ∧ person(Y) ∧ not woman(Y)).

Semantics not unique in logic programming:
Models are
I={woman(adam), woman(eva), person(adam), person(eva)}
I={man(adam), man(eva), person(adam), person(eva)}
I={woman(adam), man(eva), person(adam), person(eva)}
I={man(adam), woman(eva), person(adam), person(eva)}

What is the semantics in first order logics?
Models are: woman_FAIL=={} = man_FAIL
Simple characterization of completion

Let C be a definition of r, I be a Herbrand model of the corresponding completed definition, and \(r(t_1, \ldots, t_n) \) be a ground atom.

Then
\[
I \models r(t_1, \ldots, t_n),
\]

\[
\exists (r(t_1, \ldots, t_n) : - L_1, \ldots, L_m) \in C^* (I \models L_1 \land \ldots \land L_n):
\]
Immediate consequence operator

\[T_C(I) := \{ A \mid \text{there exists } (A \rightarrow G) \in C^* \text{ such that } I \models G \} \]

Fixpoint: an interpretation such that \(T_C(I) = I \).
Definite clauses have the least model

Let C be a set of definite clauses.

Define

$$I_0 := \{\}$$
$$I_{n+1} := T_C(I_n), \text{ for all } n \geq 0,$$
$$I_\omega := \bigcup_{i=0}^{\omega} I_i$$

Then I_ω is the least fixpoint of T_C and also the least Herbrand model of C.
Non-recursive databases

Let C be a non-recursive database and K be an arbitrary interpretation.

Define

$$I_0 := K$$
$$I_{n+1} := T_C(I_n), \text{ for all } n \geq 0,$$
$$I_\omega := \bigcup_{i=0}^{\omega} I_i$$

Then I_ω is the only fixpoint of T_C. Moreover, for some n we have $I_\omega = I_n$.
Non-recursive sets of clauses

- Let C be a set of clauses.

- Its dependency graph consists of pairs \(p ! r \) such that \(p \) occurs in the body of a clause which defines \(r \) in C.

- A set of clauses is non-recursive if the dependency graph contains no cycles.
Non-recursive sets of clauses

Let C be a set of clauses.

Its **dependency graph** consists of pairs $p ! r$ such that p occurs in the body of a clause which defines r in C.

A set of clauses is **non-recursive** if the dependency graph contains no cycles.

$\text{Person}(a)$.

$\text{Woman}(X) :- \text{Person}(X), \neg \text{Man}(X)$.

$\text{Man}(X) :- \text{Person}(X), \neg \text{Woman}(X)$.
Non-recursive sets of clauses

Dependency graph of C consists of pairs p ! r such that p occurs in the body of a clause which defines r in C. C is non-recursive if the dependency graph contains no cycles.

A relation p depends on a relation q in C if there exists a path of length ≥ 1 from q to p in the dependency graph of C. A set of clauses is non-recursive if and only if no relation depends on itself.