This course is from a past or future semester. If you are looking for current courses, go to the course overview.
Computational Social Science
[go to overview]Summer Term 2019
https://klips.uni-koblenz-landau.de/v/112823
Lecture: Wednesday 14:15-15:45 (K 101) - first class: 10.04.2019
Exercise: Wednesday 16:00-17:30 (E 313) - first class: 10.04.2019
LECTURE (14:15)- Now in room K 101 | EXERCISE (16:00) | |
---|---|---|
10.4. | CSS Introduction | T: Python tutorial, Pandas tutorial |
17.4. | Scientific Data Analysis | Measurements and Data Biases |
24.4. | ||
1.5. | Holiday | |
8.5. | Student Presentations - TOPICS | Student Presentations |
15.5. | Intro to Network Analysis | Team Formation |
22.5. | Algorithmic Auditing | T: Dependency management, git, binder |
29.5. | Socio-linguistics | Team consults |
5.6. | T: scikit learn; Team consults | |
12.6. | Holiday | Holiday |
19.6. | Correlations, Regressions and Causality | Team consults: Status report all teams |
26.6. | Team consults | Team consults |
3.7. | Inequality Theory and Measurements | |
10.7. | Final Presentations | Final Presentations |
17.7. | ||
24.7. | Submission of Final Report |
Books:
- · Salganik, M. J. (2017). Bit by bit: Social research in the digital age. Princeton, NJ: Princeton University Press.
- · Stanley Wasserman and Katherine Faust, Social Network Analysis - Methods and Applications, 1995
- · Dive into Python: https://www.diveinto.org/python3/
Papers:
- · Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A.-L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutman, M., Jebara, T., King, G., & Alstyne, M. V. (2009). Computational social science. Science, 323(5915), 721–723. doi:10.1126/science.1167742.
- · Strohmaier, M. & Wagner, C. (2014). Computational social science for the world wide web. IEEE Intelligent Systems, 29(5), 84–88. doi:10.1109/MIS.2014.80.
- · Golder, S. A. & Macy, M. W. (2014). Digital footprints: Opportunities and challenges for online social research. Annual Review of Sociology, 40, 129–152. doi:10.1146/annurevsoc-071913-043145.
- · Jungherr, A. (2018). Normalizing digital trace data. In N. J. Stroud & S. C. McGregor (Eds.), Digital discussions: How big data informs political communication. New York, NY: Routledge.
- · Howison, J., Wiggins, A., & Crowston, K. (2011). Validity issues in the use of social network analysis with digital trace data. Journal of the Association for Information Systems, 12(12), 767–797.
- · Mayer-Schönberger, V. & Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think. New York, NY: Houghton Mifflin.
- · Puschmann, C. & Burgess, J. (2013). The politics of Twitter data. In K. Weller, A. Bruns, J. Burgess, M. Mahrt, & C. Puschmann (Eds.), Twitter and Society (pp. 43–54). New York, NY: Peter Lang Publishing.
- · Rogers, R. (2013a). Debanalizing Twitter: The transformation of an object of study. In H. Davis, H. Halpin, A. Pentland, M. Bernstein, & L. Adamic (Eds.), Websci 2013: Proceedings of the 5th annual acm web science conference (pp. 356–365). New York, NY: ACM. doi:10.1145/2464464.2464511.